Adsorption of methane on single metal atoms supported on graphene: Role of electron back-donation in binding and activation

We consider single metal atoms supported on graphene as possible candidate systems for on-board vehicular storage of methane or for methane activation. We use density functional theory to study the adsorption of one and two molecules of methane on such graphene-supported single atoms, where the meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-12, Vol.153 (24), p.244701-244701
Hauptverfasser: Pantha, Nurapati, Ulman, Kanchan, Narasimhan, Shobhana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider single metal atoms supported on graphene as possible candidate systems for on-board vehicular storage of methane or for methane activation. We use density functional theory to study the adsorption of one and two molecules of methane on such graphene-supported single atoms, where the metal atom M is a 3d-transition metal (Sc to Zn). Our results suggest that M = Sc, Ti, and V are the best candidates for gas storage applications, while Ni and Co seem particularly promising with respect to activation of the C–H bond in methane. We find a strong and linear correlation between the adsorption energy of methane and the degree of back-donation of electrons from occupied metal d-states to antibonding methane states. A similar correlation is found between the elongation of C–H bonds and electron back-donation. An important role is played by the graphene substrate in enhancing the binding of methane on metal atoms, compared to the negligible binding observed on isolated metal atoms.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0035353