E 2 JSL : Energy Efficient Joint Time Synchronization and Localization Algorithm Using Ray Tracing Model

In underwater wireless sensor networks (UWSNs), localization and time synchronization are vital services that have been tackled independently. By combining localization and time synchronization, could save nodes energy and improve accuracy jointly. Therefore, it is of great significance to study joi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-12, Vol.20 (24)
Hauptverfasser: Shams, Rehan, Otero, Pablo, Aamir, Muhammad, Hanif, Fozia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In underwater wireless sensor networks (UWSNs), localization and time synchronization are vital services that have been tackled independently. By combining localization and time synchronization, could save nodes energy and improve accuracy jointly. Therefore, it is of great significance to study joint synchronization and localization of underwater sensors with low energy consumption. In this paper, we propose the energy-efficient joint framework of localization and time synchronization, in which the stratification effect is considered by using a ray-tracing approach. Based on Snell's law, ray tracing is applied to compensate for the variation of sound speed, this is one of the contributions of this article. Another contribution of this article is the iteration process which is used to improve the accuracy of localization and time synchronization. Simulation results show that the proposed joint approach outperforms the existing approaches in both energy efficiency and accuracy. This study also calculates Cramer-Rao lower bound to prove the convergence of the proposed technique along with the calculation of complexity of the proposed algorithm to show that the provided study takes less running time compared to the existing techniques.
ISSN:1424-8220
DOI:10.3390/s20247222