Use of 3-nitrooxypropanol in a commercial feedlot to decrease enteric methane emissions from cattle fed a corn-based finishing diet
The present study evaluated enteric CH4 production, dry matter (DM) intake (DMI), and rumen fermentation in feedlot cattle supplemented with increasing concentrations of 3-nitrooxypropanol (3-NOP). A total of 100 crossbred steers (body weight, 421 +/- 11 kg) was randomly assigned to one of four trea...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2021-01, Vol.99 (1), Article 394 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study evaluated enteric CH4 production, dry matter (DM) intake (DMI), and rumen fermentation in feedlot cattle supplemented with increasing concentrations of 3-nitrooxypropanol (3-NOP). A total of 100 crossbred steers (body weight, 421 +/- 11 kg) was randomly assigned to one of four treatments (n = 25/treatment): control (no 3-NOP) or low (100 mg/kg DM), medium (125 mg/kg DM), and high (150 mg/kg DM) doses of 3-NOP. The study was comprised of 28 d of adaptation followed by three 28-d periods, with CH4 measured for 7 d per period and cattle remaining on their respective diets throughout the 112-d study. Each treatment group was assigned to a pen, with the cattle and diets rotated among pens weekly to allow the animals to access the GreenFeed emission monitoring (GEM) system stationed in one of the pens for CH 4 measurement. Measured concentration (mg/kg DM) of 3-NOP in the total diet consumed (basal diet + GEM pellet) was 85.6 for low, 107.6 for medium, and 124.5 for high doses of 3-NOP. There was a treatment x period interaction (P < 0.001) for DMI; compared with control, the DMI was less for the low and high doses in period 1, with no differences thereafter. Compared with control (10.78 g/kg DMI), CH,, yield (g/kg DMI) was decreased (P < 0.001) by 52%, 76%, and 63% for low, medium, and high doses of 3-NOP, respectively. A treatment x period effect (P = 0.048) for CH4 yield indicated that the low dose decreased in efficacy from 59% decrease in periods 1 and 2 to 37% decrease in period 3, while the efficacy of the medium and high doses remained consistent over time. Irrespective of dose, hydrogen emissions increased by 4.9-fold (P < 0.001), and acetate:propionate ratio in rumen fluid decreased (P = 0.045) with 3-NOP supplementation, confirming that other hydroge-nutilizing pathways become more important in the CH4 -inhibited rumen. The study indicates that supplementation of corn-based finishing diets with 3-NOP using a medium dose is an effective CH4 mitigation strategy for commercial beef feedlots with a 76% decrease in CH4 yield. Further research is needed to determine the effects of 3-NOP dose on weight gain, feed conversion efficiency, and carcass characteristics of feedlot cattle at a commercial scale. |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.1093/jas/skaa394 |