Overproduction of Chloroplast Glyceraldehyde-3-Phosphate Dehydrogenase Improves Photosynthesis Slightly under Elevated [CO2] Conditions in Rice

Abstract Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) limits the regeneration of ribulose 1,5-bisphosphate (RuBP) in the Calvin–Benson cycle. However, it does not always limit the rate of CO2 assimilation. In the present study, the effects of overproduction of GAPDH on the rate of CO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2021-03, Vol.62 (1), p.156-165
Hauptverfasser: Suzuki, Yuji, Ishiyama, Keiki, Sugawara, Misaki, Suzuki, Yuka, Kondo, Eri, Takegahara-Tamakawa, Yuki, Yoon, Dong-Kyung, Suganami, Mao, Wada, Shinya, Miyake, Chikahiro, Makino, Amane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) limits the regeneration of ribulose 1,5-bisphosphate (RuBP) in the Calvin–Benson cycle. However, it does not always limit the rate of CO2 assimilation. In the present study, the effects of overproduction of GAPDH on the rate of CO2 assimilation under elevated [CO2] conditions, where the capacity for RuBP regeneration limits photosynthesis, were examined in transgenic rice (Oryza sativa). GAPDH activity was increased to 3.2- and 4.5-fold of the wild-type levels by co-overexpression of the GAPDH genes, GAPA and GAPB, respectively. In the transgenic rice plants, the rate of CO2 assimilation under elevated [CO2] conditions increased by approximately 10%, whereas that under normal and low [CO2] conditions was not affected. These results indicate that overproduction of GAPDH is effective in improving photosynthesis under elevated [CO2] conditions, although its magnitude is relatively small. By contrast, biomass production of the transgenic rice plants was not greater than that of wild-type plants under elevated [CO2] conditions, although starch content tended to increase marginally.
ISSN:0032-0781
1471-9053
1471-9053
DOI:10.1093/pcp/pcaa149