Diagnostic differentiation of Zika and dengue virus exposure by analyzing T cell receptor sequences from peripheral blood of infected HLA-A2 transgenic mice

Zika virus (ZIKV) is a significant global health threat due to its potential for rapid emergence and association with severe congenital malformations during infection in pregnancy. Despite the urgent need, accurate diagnosis of ZIKV infection is still a major hurdle that must be overcome. Contributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2020-12, Vol.14 (12), p.e0008896-e0008896, Article 0008896
Hauptverfasser: Hassert, Mariah, Wolf, Kyle J., Rajeh, Ahmad, Shiebout, Courtney, Hoft, Stella G., Ahn, Tae-Hyuk, DiPaolo, Richard J., Brien, James D., Pinto, Amelia K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zika virus (ZIKV) is a significant global health threat due to its potential for rapid emergence and association with severe congenital malformations during infection in pregnancy. Despite the urgent need, accurate diagnosis of ZIKV infection is still a major hurdle that must be overcome. Contributing to the inaccuracy of most serologically-based diagnostic assays for ZIKV, is the substantial geographic and antigenic overlap with other flaviviruses, including the four serotypes of dengue virus (DENV). Within this study, we have utilized a novel T cell receptor (TCR) sequencing platform to distinguish between ZIKV and DENV infections. Using high-throughput TCR sequencing of lymphocytes isolated from DENV and ZIKV infected mice, we were able to develop an algorithm which could identify virus-associated TCR sequences uniquely associated with either a prior ZIKV or DENV infection in mice. Using this algorithm, we were then able to separate mice that had been exposed to ZIKV or DENV infection with 97% accuracy. Overall this study serves as a proof-of-principle that T cell receptor sequencing can be used as a diagnostic tool capable of distinguishing between closely related viruses. Our results demonstrate the potential for this innovative platform to be used to accurately diagnose Zika virus infection and potentially the next emerging pathogen(s). Author summary Diagnostic differentiation between dengue virus and Zika virus infections is a challenge due to serological cross-reactivity. In this study, we used a novel T cell receptor sequencing platform to identify T cell receptor sequences significantly associated with either dengue or Zika virus infection in HLA-A2 transgenic mice. These libraries were used to computationally train diagnostic classifiers which were capable of distinguishing between dengue and Zika virus in independent cohorts of infected mice.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0008896