The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor
The effect of the polyanionic polymer of inorganic polyphosphate (polyP) involved in innate immunity on the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the cellular ACE2 receptor was studied. The RBD surface comprises a basic amino acid stretch of four arginine re...
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2020-12, Vol.8 (23), p.663-661 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of the polyanionic polymer of inorganic polyphosphate (polyP) involved in innate immunity on the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the cellular ACE2 receptor was studied. The RBD surface comprises a basic amino acid stretch of four arginine residues which interact with the physiological polyP (polyP
40
) and polyP
3
. Subsequently, the interaction of RBD with ACE2 is sensitively inhibited. After the chemical modification of arginine, an increased inhibition by polyP, at a 1 : 1 molar ratio (polyP : RBP), is measured already at 0.1 μg mL
−1
. Heparin was ineffective. The results suggest a potential therapeutic benefit of polyP against SARS-CoV-2 infection.
The polymer polyphosphate, abundant in blood platelets, blocks the binding of the receptor-binding domain (RBD) of the SARS- spike (S)-protein to the angiotensin-converting enzyme 2 (ACE2) at low concentrations. |
---|---|
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/d0bm01244k |