Heterogeneous activation of peroxydisulfate by sulfur-doped g-C 3 N 4 under visible-light irradiation: Implications for the degradation of spiramycin and an assessment of N-nitrosodimethylamine formation potential

In this study, peroxydisulfate (PDS) was activated by synthesized sulfur-doped g-C N (SCN) under visible-light irradiation and was adopted to enhance the removal of spiramycin, which is an important precursor of N-nitrosodimethylamine (NDMA). Specifically, 95.4% of spiramycin (≤10 mg/L) was removed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2021-03, Vol.406, p.124328
Hauptverfasser: Dou, Yicheng, Yan, Tingting, Zhang, Zhipeng, Sun, Qiya, Wang, Lin, Li, Yongmei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, peroxydisulfate (PDS) was activated by synthesized sulfur-doped g-C N (SCN) under visible-light irradiation and was adopted to enhance the removal of spiramycin, which is an important precursor of N-nitrosodimethylamine (NDMA). Specifically, 95.4% of spiramycin (≤10 mg/L) was removed in 60 min under the conditions of an initial value of pH of 7.0, an SCN dose of 1.0 g/L, and a PDS dose of 200 mg/L, and its degradation fitted well with the pseudo first-order kinetics. Electron paramagnetic resonance analysis and trapping experiments confirmed that ·O and h were the main oxidizers for the degradation of spiramycin, and ·SO and ·OH also participated in the removal of spiramycin. The removal of spiramycin in the PDS/SCN visible-light catalytic system occurred through three different pathways: aldehyde oxidation, cleavage of C-O bond and demethylation. Notably, 61.4% of NDMA formation potential (FP) was reduced after the reaction. The SCN catalyst was stable and its catalytic performance was excellent in the PDS/SCN system, as the spiramycin removal efficiency decreased only slightly from 95.4% to 87.3% after being reused three times. Therefore, our study not only provides an alternative method for removing spiramycin but can also can significantly reduce NDMA FP.
ISSN:1873-3336