ADPriboDB 2.0: an updated database of ADP-ribosylated proteins
Abstract ADP-ribosylation is a protein modification responsible for biological processes such as DNA repair, RNA regulation, cell cycle and biomolecular condensate formation. Dysregulation of ADP-ribosylation is implicated in cancer, neurodegeneration and viral infection. We developed ADPriboDB (adp...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2021-01, Vol.49 (D1), p.D261-D265 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
ADP-ribosylation is a protein modification responsible for biological processes such as DNA repair, RNA regulation, cell cycle and biomolecular condensate formation. Dysregulation of ADP-ribosylation is implicated in cancer, neurodegeneration and viral infection. We developed ADPriboDB (adpribodb.leunglab.org) to facilitate studies in uncovering insights into the mechanisms and biological significance of ADP-ribosylation. ADPriboDB 2.0 serves as a one-stop repository comprising 48 346 entries and 9097 ADP-ribosylated proteins, of which 6708 were newly identified since the original database release. In this updated version, we provide information regarding the sites of ADP-ribosylation in 32 946 entries. The wealth of information allows us to interrogate existing databases or newly available data. For example, we found that ADP-ribosylated substrates are significantly associated with the recently identified human protein interaction networks associated with SARS-CoV-2, which encodes a conserved protein domain called macrodomain that binds and removes ADP-ribosylation. In addition, we create a new interactive tool to visualize the local context of ADP-ribosylation, such as structural and functional features as well as other post-translational modifications (e.g. phosphorylation, methylation and ubiquitination). This information provides opportunities to explore the biology of ADP-ribosylation and generate new hypotheses for experimental testing. |
---|---|
ISSN: | 0305-1048 1362-4962 1362-4962 |
DOI: | 10.1093/nar/gkaa941 |