Discovery of Novel Substituted N‑(4-Amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide Analogues as Potent Human Adenovirus Inhibitors

An effective therapy for human adenovirus (HAdV) infections in immunocompromised patients and healthy individuals with community-acquired pneumonia remains an unmet medical need. We herein reported a series of novel substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2020-11, Vol.63 (21), p.12830-12852
Hauptverfasser: Xu, Jimin, Berastegui-Cabrera, Judith, Ye, Na, Carretero-Ledesma, Marta, Pachón-Díaz, Jerónimo, Chen, Haiying, Pachón-Ibáñez, Maria Eugenia, Sánchez-Céspedes, Javier, Zhou, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An effective therapy for human adenovirus (HAdV) infections in immunocompromised patients and healthy individuals with community-acquired pneumonia remains an unmet medical need. We herein reported a series of novel substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent HAdV inhibitors. Compounds 6, 15, 29, 40, 43, 46, 47, and 54 exhibited increased selectivity indexes (SI > 100) compared to the lead compound niclosamide, while maintaining sub-micromolar to low micromolar potency against HAdV. The preliminary mechanistic studies indicated that compounds 6 and 43 possibly target the HAdV DNA replication process, while compounds 46 and 47 suppress later steps of HAdV life cycle. Notably, among these derivatives, compound 15 showed improved anti-HAdV activity (IC50 = 0.27 μM), significantly decreased cytotoxicity (CC50 = 156.8 μM), and low in vivo toxicity (maximum tolerated dose = 150 mg/kg in hamster) as compared with niclosamide, supporting its further in vivo efficacy studies for the treatment of HAdV infections.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.0c01226