Surgical management of incidentally discovered low-grade gliomas

Although most patients with low-grade glioma (LGG) present after a seizure, a small proportion is diagnosed after neuroimaging is performed for a sign or symptom unrelated to the tumor. While these tumors invariably grow, some surgeons argue for a watchful waiting approach. Here, the authors report...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurosurgery 2020-10, Vol.135 (2), p.480
Hauptverfasser: Gogos, Andrew J, Young, Jacob S, Pereira, Matheus P, Morshed, Ramin A, Potts, Matthew B, Hervey-Jumper, Shawn L, Berger, Mitchel S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although most patients with low-grade glioma (LGG) present after a seizure, a small proportion is diagnosed after neuroimaging is performed for a sign or symptom unrelated to the tumor. While these tumors invariably grow, some surgeons argue for a watchful waiting approach. Here, the authors report on their experience in the surgical treatment of patients with incidental LGG (iLGG) and describe the neurological outcomes, survival, and complications. Relevant cases were identified from a prospective registry of patients undergoing glioma resection at the University of California, San Francisco, between 1997 and 2019. Cases were considered iLGG when the lesion was noted on imaging performed for a reason unrelated to the tumor. Demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. Tumor volumes, growth, and extent of resection were calculated from pre- and postoperative volumetric FLAIR sequences. One hundred thirteen of 657 (17.2%) first-time resections for LGG were for incidental lesions. The most common reasons for the discovery of an iLGG were headaches (without mass effect, 34.5%) or trauma (16.8%). Incidental tumors were no different from symptomatic lesions in terms of laterality or location, but they were significantly smaller (22.5 vs 57.5 cm3, p < 0.0001). There was no difference in diagnosis between patients with iLGG and those with symptomatic LGG (sLGG), incorporating both molecular and pathological data. The median preoperative observation time for iLGG was 3.1 months (range 1 month-12 years), and there was a median growth rate of 3.9 cm3/year. Complete resection of the FLAIR abnormality was achieved in 57% of patients with incidental lesions but only 23.8% of symptomatic lesions (p < 0.001), and the residual volumes were smaller for iLGGs (2.9 vs 13.5 cm3, p < 0.0001). Overall survival was significantly longer for patients with incidental tumors (median survival not reached for patients with iLGG vs 14.6 years for those with sLGG, p < 0.0001). There was a 4.4% rate of neurological deficits at 6 months. The authors present the largest cohort of iLGGs. Patient age, tumor location, and molecular genetics were not different between iLGGs and sLGGs. Incidental tumors were smaller, a greater extent of resection could be achieved, and overall survival was improved compared to those for patients with sLGG. Operative morbidity and rates of neurological deficit were acceptably low; thus, the authors advo
ISSN:1933-0693