Traffic campaigns and overconfidence: An experimental approach
•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that vid...
Gespeichert in:
Veröffentlicht in: | Accident analysis and prevention 2020-10, Vol.146, p.105694-105694, Article 105694 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105694 |
---|---|
container_issue | |
container_start_page | 105694 |
container_title | Accident analysis and prevention |
container_volume | 146 |
creator | Silva, Thiago Christiano Laiz, Marcela T. Tabak, Benjamin Miranda |
description | •We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification.
We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics. |
doi_str_mv | 10.1016/j.aap.2020.105694 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32980658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001457519307213</els_id><sourcerecordid>2446995139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</originalsourceid><addsrcrecordid>eNqNkE2LFDEQhoMo7rj6A7xIHwXpMR-dLwVhGVwVFrys51BJV2uGmXSb9Kz6703Ts3sUT5WC562qPIS8ZHTLKFNv91uAacspX3qpbPeIbJjRtuVU6sdkQyllbSe1vCDPStnXVhstn5ILwa2hSpoN-XCbYRhiaAIcJ4jfU2kg9c14hzmMaYg9poDvmqvU4O8JczximuHQwDTlEcKP5-TJAIeCL871kny7_ni7-9zefP30ZXd10wZh2NwGrwSwwUukSlPNbW8UB2s84z3lHqTuBQdjQQxegfCGacWQGcEkR98pcUler3Pr2p8nLLM7xhLwcICE46k43nXKWsmErShb0ZDHUjIObqpnQ_7jGHWLNrd3VZtbtLlVW828Oo8_-SP2D4l7TxV4swK_0I9DCXHR8oBVsVIbW93WF12uNf9P7-IMcxzTbjyluUbfr1GsNu8iZneO9zFjmF0_xn_84y9HmpzW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446995139</pqid></control><display><type>article</type><title>Traffic campaigns and overconfidence: An experimental approach</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Silva, Thiago Christiano ; Laiz, Marcela T. ; Tabak, Benjamin Miranda</creator><creatorcontrib>Silva, Thiago Christiano ; Laiz, Marcela T. ; Tabak, Benjamin Miranda</creatorcontrib><description>•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification.
We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics.</description><identifier>ISSN: 0001-4575</identifier><identifier>EISSN: 1879-2057</identifier><identifier>DOI: 10.1016/j.aap.2020.105694</identifier><identifier>PMID: 32980658</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Accidents, Traffic - prevention & control ; Adult ; Attitude ; Australia ; Automobile Driving - psychology ; Brazil ; Communication ; Econometrics ; Engineering ; Ergonomics ; Europe ; Female ; Health Education ; Humans ; Life Sciences & Biomedicine ; Machine learning ; Male ; Overconfidence ; Public, Environmental & Occupational Health ; Safety ; Science & Technology ; Self Efficacy ; Social Sciences ; Social Sciences - Other Topics ; Social Sciences, Interdisciplinary ; Technology ; Traffic campaigns ; Transportation ; Video ; Young Adult</subject><ispartof>Accident analysis and prevention, 2020-10, Vol.146, p.105694-105694, Article 105694</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000578987500006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</citedby><cites>FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</cites><orcidid>0000-0003-2631-4393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aap.2020.105694$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32980658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Thiago Christiano</creatorcontrib><creatorcontrib>Laiz, Marcela T.</creatorcontrib><creatorcontrib>Tabak, Benjamin Miranda</creatorcontrib><title>Traffic campaigns and overconfidence: An experimental approach</title><title>Accident analysis and prevention</title><addtitle>ACCIDENT ANAL PREV</addtitle><addtitle>Accid Anal Prev</addtitle><description>•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification.
We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics.</description><subject>Accidents, Traffic - prevention & control</subject><subject>Adult</subject><subject>Attitude</subject><subject>Australia</subject><subject>Automobile Driving - psychology</subject><subject>Brazil</subject><subject>Communication</subject><subject>Econometrics</subject><subject>Engineering</subject><subject>Ergonomics</subject><subject>Europe</subject><subject>Female</subject><subject>Health Education</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Machine learning</subject><subject>Male</subject><subject>Overconfidence</subject><subject>Public, Environmental & Occupational Health</subject><subject>Safety</subject><subject>Science & Technology</subject><subject>Self Efficacy</subject><subject>Social Sciences</subject><subject>Social Sciences - Other Topics</subject><subject>Social Sciences, Interdisciplinary</subject><subject>Technology</subject><subject>Traffic campaigns</subject><subject>Transportation</subject><subject>Video</subject><subject>Young Adult</subject><issn>0001-4575</issn><issn>1879-2057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ARHDP</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE2LFDEQhoMo7rj6A7xIHwXpMR-dLwVhGVwVFrys51BJV2uGmXSb9Kz6703Ts3sUT5WC562qPIS8ZHTLKFNv91uAacspX3qpbPeIbJjRtuVU6sdkQyllbSe1vCDPStnXVhstn5ILwa2hSpoN-XCbYRhiaAIcJ4jfU2kg9c14hzmMaYg9poDvmqvU4O8JczximuHQwDTlEcKP5-TJAIeCL871kny7_ni7-9zefP30ZXd10wZh2NwGrwSwwUukSlPNbW8UB2s84z3lHqTuBQdjQQxegfCGacWQGcEkR98pcUler3Pr2p8nLLM7xhLwcICE46k43nXKWsmErShb0ZDHUjIObqpnQ_7jGHWLNrd3VZtbtLlVW828Oo8_-SP2D4l7TxV4swK_0I9DCXHR8oBVsVIbW93WF12uNf9P7-IMcxzTbjyluUbfr1GsNu8iZneO9zFjmF0_xn_84y9HmpzW</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Silva, Thiago Christiano</creator><creator>Laiz, Marcela T.</creator><creator>Tabak, Benjamin Miranda</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>17B</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DVR</scope><scope>EGQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2631-4393</orcidid></search><sort><creationdate>20201001</creationdate><title>Traffic campaigns and overconfidence: An experimental approach</title><author>Silva, Thiago Christiano ; Laiz, Marcela T. ; Tabak, Benjamin Miranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidents, Traffic - prevention & control</topic><topic>Adult</topic><topic>Attitude</topic><topic>Australia</topic><topic>Automobile Driving - psychology</topic><topic>Brazil</topic><topic>Communication</topic><topic>Econometrics</topic><topic>Engineering</topic><topic>Ergonomics</topic><topic>Europe</topic><topic>Female</topic><topic>Health Education</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Machine learning</topic><topic>Male</topic><topic>Overconfidence</topic><topic>Public, Environmental & Occupational Health</topic><topic>Safety</topic><topic>Science & Technology</topic><topic>Self Efficacy</topic><topic>Social Sciences</topic><topic>Social Sciences - Other Topics</topic><topic>Social Sciences, Interdisciplinary</topic><topic>Technology</topic><topic>Traffic campaigns</topic><topic>Transportation</topic><topic>Video</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Thiago Christiano</creatorcontrib><creatorcontrib>Laiz, Marcela T.</creatorcontrib><creatorcontrib>Tabak, Benjamin Miranda</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Accident analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Thiago Christiano</au><au>Laiz, Marcela T.</au><au>Tabak, Benjamin Miranda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic campaigns and overconfidence: An experimental approach</atitle><jtitle>Accident analysis and prevention</jtitle><stitle>ACCIDENT ANAL PREV</stitle><addtitle>Accid Anal Prev</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>146</volume><spage>105694</spage><epage>105694</epage><pages>105694-105694</pages><artnum>105694</artnum><issn>0001-4575</issn><eissn>1879-2057</eissn><abstract>•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification.
We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>32980658</pmid><doi>10.1016/j.aap.2020.105694</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2631-4393</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4575 |
ispartof | Accident analysis and prevention, 2020-10, Vol.146, p.105694-105694, Article 105694 |
issn | 0001-4575 1879-2057 |
language | eng |
recordid | cdi_pubmed_primary_32980658 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Accidents, Traffic - prevention & control Adult Attitude Australia Automobile Driving - psychology Brazil Communication Econometrics Engineering Ergonomics Europe Female Health Education Humans Life Sciences & Biomedicine Machine learning Male Overconfidence Public, Environmental & Occupational Health Safety Science & Technology Self Efficacy Social Sciences Social Sciences - Other Topics Social Sciences, Interdisciplinary Technology Traffic campaigns Transportation Video Young Adult |
title | Traffic campaigns and overconfidence: An experimental approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20campaigns%20and%20overconfidence:%20An%20experimental%20approach&rft.jtitle=Accident%20analysis%20and%20prevention&rft.au=Silva,%20Thiago%20Christiano&rft.date=2020-10-01&rft.volume=146&rft.spage=105694&rft.epage=105694&rft.pages=105694-105694&rft.artnum=105694&rft.issn=0001-4575&rft.eissn=1879-2057&rft_id=info:doi/10.1016/j.aap.2020.105694&rft_dat=%3Cproquest_pubme%3E2446995139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446995139&rft_id=info:pmid/32980658&rft_els_id=S0001457519307213&rfr_iscdi=true |