Traffic campaigns and overconfidence: An experimental approach

•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that vid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accident analysis and prevention 2020-10, Vol.146, p.105694-105694, Article 105694
Hauptverfasser: Silva, Thiago Christiano, Laiz, Marcela T., Tabak, Benjamin Miranda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105694
container_issue
container_start_page 105694
container_title Accident analysis and prevention
container_volume 146
creator Silva, Thiago Christiano
Laiz, Marcela T.
Tabak, Benjamin Miranda
description •We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification. We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics.
doi_str_mv 10.1016/j.aap.2020.105694
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32980658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001457519307213</els_id><sourcerecordid>2446995139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</originalsourceid><addsrcrecordid>eNqNkE2LFDEQhoMo7rj6A7xIHwXpMR-dLwVhGVwVFrys51BJV2uGmXSb9Kz6703Ts3sUT5WC562qPIS8ZHTLKFNv91uAacspX3qpbPeIbJjRtuVU6sdkQyllbSe1vCDPStnXVhstn5ILwa2hSpoN-XCbYRhiaAIcJ4jfU2kg9c14hzmMaYg9poDvmqvU4O8JczximuHQwDTlEcKP5-TJAIeCL871kny7_ni7-9zefP30ZXd10wZh2NwGrwSwwUukSlPNbW8UB2s84z3lHqTuBQdjQQxegfCGacWQGcEkR98pcUler3Pr2p8nLLM7xhLwcICE46k43nXKWsmErShb0ZDHUjIObqpnQ_7jGHWLNrd3VZtbtLlVW828Oo8_-SP2D4l7TxV4swK_0I9DCXHR8oBVsVIbW93WF12uNf9P7-IMcxzTbjyluUbfr1GsNu8iZneO9zFjmF0_xn_84y9HmpzW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446995139</pqid></control><display><type>article</type><title>Traffic campaigns and overconfidence: An experimental approach</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Silva, Thiago Christiano ; Laiz, Marcela T. ; Tabak, Benjamin Miranda</creator><creatorcontrib>Silva, Thiago Christiano ; Laiz, Marcela T. ; Tabak, Benjamin Miranda</creatorcontrib><description>•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification. We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics.</description><identifier>ISSN: 0001-4575</identifier><identifier>EISSN: 1879-2057</identifier><identifier>DOI: 10.1016/j.aap.2020.105694</identifier><identifier>PMID: 32980658</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Accidents, Traffic - prevention &amp; control ; Adult ; Attitude ; Australia ; Automobile Driving - psychology ; Brazil ; Communication ; Econometrics ; Engineering ; Ergonomics ; Europe ; Female ; Health Education ; Humans ; Life Sciences &amp; Biomedicine ; Machine learning ; Male ; Overconfidence ; Public, Environmental &amp; Occupational Health ; Safety ; Science &amp; Technology ; Self Efficacy ; Social Sciences ; Social Sciences - Other Topics ; Social Sciences, Interdisciplinary ; Technology ; Traffic campaigns ; Transportation ; Video ; Young Adult</subject><ispartof>Accident analysis and prevention, 2020-10, Vol.146, p.105694-105694, Article 105694</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000578987500006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</citedby><cites>FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</cites><orcidid>0000-0003-2631-4393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aap.2020.105694$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32980658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Thiago Christiano</creatorcontrib><creatorcontrib>Laiz, Marcela T.</creatorcontrib><creatorcontrib>Tabak, Benjamin Miranda</creatorcontrib><title>Traffic campaigns and overconfidence: An experimental approach</title><title>Accident analysis and prevention</title><addtitle>ACCIDENT ANAL PREV</addtitle><addtitle>Accid Anal Prev</addtitle><description>•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification. We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics.</description><subject>Accidents, Traffic - prevention &amp; control</subject><subject>Adult</subject><subject>Attitude</subject><subject>Australia</subject><subject>Automobile Driving - psychology</subject><subject>Brazil</subject><subject>Communication</subject><subject>Econometrics</subject><subject>Engineering</subject><subject>Ergonomics</subject><subject>Europe</subject><subject>Female</subject><subject>Health Education</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Machine learning</subject><subject>Male</subject><subject>Overconfidence</subject><subject>Public, Environmental &amp; Occupational Health</subject><subject>Safety</subject><subject>Science &amp; Technology</subject><subject>Self Efficacy</subject><subject>Social Sciences</subject><subject>Social Sciences - Other Topics</subject><subject>Social Sciences, Interdisciplinary</subject><subject>Technology</subject><subject>Traffic campaigns</subject><subject>Transportation</subject><subject>Video</subject><subject>Young Adult</subject><issn>0001-4575</issn><issn>1879-2057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ARHDP</sourceid><sourceid>EIF</sourceid><recordid>eNqNkE2LFDEQhoMo7rj6A7xIHwXpMR-dLwVhGVwVFrys51BJV2uGmXSb9Kz6703Ts3sUT5WC562qPIS8ZHTLKFNv91uAacspX3qpbPeIbJjRtuVU6sdkQyllbSe1vCDPStnXVhstn5ILwa2hSpoN-XCbYRhiaAIcJ4jfU2kg9c14hzmMaYg9poDvmqvU4O8JczximuHQwDTlEcKP5-TJAIeCL871kny7_ni7-9zefP30ZXd10wZh2NwGrwSwwUukSlPNbW8UB2s84z3lHqTuBQdjQQxegfCGacWQGcEkR98pcUler3Pr2p8nLLM7xhLwcICE46k43nXKWsmErShb0ZDHUjIObqpnQ_7jGHWLNrd3VZtbtLlVW828Oo8_-SP2D4l7TxV4swK_0I9DCXHR8oBVsVIbW93WF12uNf9P7-IMcxzTbjyluUbfr1GsNu8iZneO9zFjmF0_xn_84y9HmpzW</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Silva, Thiago Christiano</creator><creator>Laiz, Marcela T.</creator><creator>Tabak, Benjamin Miranda</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>17B</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DVR</scope><scope>EGQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2631-4393</orcidid></search><sort><creationdate>20201001</creationdate><title>Traffic campaigns and overconfidence: An experimental approach</title><author>Silva, Thiago Christiano ; Laiz, Marcela T. ; Tabak, Benjamin Miranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-cb63a1fb5e0670729d862a98b12d02ba57d32a89a3fb6a3b81761e183152eb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidents, Traffic - prevention &amp; control</topic><topic>Adult</topic><topic>Attitude</topic><topic>Australia</topic><topic>Automobile Driving - psychology</topic><topic>Brazil</topic><topic>Communication</topic><topic>Econometrics</topic><topic>Engineering</topic><topic>Ergonomics</topic><topic>Europe</topic><topic>Female</topic><topic>Health Education</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Machine learning</topic><topic>Male</topic><topic>Overconfidence</topic><topic>Public, Environmental &amp; Occupational Health</topic><topic>Safety</topic><topic>Science &amp; Technology</topic><topic>Self Efficacy</topic><topic>Social Sciences</topic><topic>Social Sciences - Other Topics</topic><topic>Social Sciences, Interdisciplinary</topic><topic>Technology</topic><topic>Traffic campaigns</topic><topic>Transportation</topic><topic>Video</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Thiago Christiano</creatorcontrib><creatorcontrib>Laiz, Marcela T.</creatorcontrib><creatorcontrib>Tabak, Benjamin Miranda</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Accident analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Thiago Christiano</au><au>Laiz, Marcela T.</au><au>Tabak, Benjamin Miranda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic campaigns and overconfidence: An experimental approach</atitle><jtitle>Accident analysis and prevention</jtitle><stitle>ACCIDENT ANAL PREV</stitle><addtitle>Accid Anal Prev</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>146</volume><spage>105694</spage><epage>105694</epage><pages>105694-105694</pages><artnum>105694</artnum><issn>0001-4575</issn><eissn>1879-2057</eissn><abstract>•We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence.•We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence.•We do not find empirical evidence that videos with technical content (European school) change overconfidence.•This paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification. We use a controlled experiment to analyze the impact of watching different types of educational traffic campaign videos on overconfidence of undergraduate university students in Brazil. The videos have the same underlying traffic educational content but differ in the form of exhibition. We find that videos with shocking content (Australian school) are more effective in reducing drivers’ overconfidence, followed by those with punitive content (American school). We do not find empirical evidence that videos with technical content (European school) change overconfidence. Since several works point to a strong association between overconfidence and road safety, our study can support the conduit of driving safety measures by identifying efficient ways of reducing drivers’ overconfidence. Finally, this paper also introduces how to use machine learning techniques to mitigate the usual subjectivity in the design of the econometric specification that is commonly faced in many researches in experimental economics.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>32980658</pmid><doi>10.1016/j.aap.2020.105694</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2631-4393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-4575
ispartof Accident analysis and prevention, 2020-10, Vol.146, p.105694-105694, Article 105694
issn 0001-4575
1879-2057
language eng
recordid cdi_pubmed_primary_32980658
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Accidents, Traffic - prevention & control
Adult
Attitude
Australia
Automobile Driving - psychology
Brazil
Communication
Econometrics
Engineering
Ergonomics
Europe
Female
Health Education
Humans
Life Sciences & Biomedicine
Machine learning
Male
Overconfidence
Public, Environmental & Occupational Health
Safety
Science & Technology
Self Efficacy
Social Sciences
Social Sciences - Other Topics
Social Sciences, Interdisciplinary
Technology
Traffic campaigns
Transportation
Video
Young Adult
title Traffic campaigns and overconfidence: An experimental approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20campaigns%20and%20overconfidence:%20An%20experimental%20approach&rft.jtitle=Accident%20analysis%20and%20prevention&rft.au=Silva,%20Thiago%20Christiano&rft.date=2020-10-01&rft.volume=146&rft.spage=105694&rft.epage=105694&rft.pages=105694-105694&rft.artnum=105694&rft.issn=0001-4575&rft.eissn=1879-2057&rft_id=info:doi/10.1016/j.aap.2020.105694&rft_dat=%3Cproquest_pubme%3E2446995139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446995139&rft_id=info:pmid/32980658&rft_els_id=S0001457519307213&rfr_iscdi=true