Molecular and cellular responses to long-term sound exposure in peled (Coregonus peled)a
This research examined the impacts of acoustic stress in peled (Coregonus peled Gmelin, 1788), a species commonly cultivated in Russia. This study presents a comparative analysis of the macula sacculi and otoliths, as well as primary hematological and secondary telomere stress responses, in control...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2020-08, Vol.148 (2), p.895-907 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research examined the impacts of acoustic stress in peled (Coregonus peled Gmelin, 1788), a species commonly cultivated in Russia. This study presents a comparative analysis of the macula sacculi and otoliths, as well as primary hematological and secondary telomere stress responses, in control and sound-exposed peled. The authors measured the effects of long-term (up to 18 days) exposure to a 300 Hz tone at mean sound pressure levels of 176–186 dB re 1 μPa (SPLpk–pk); the frequency and intensity were selected to approximate loud acoustic environments associated with cleaning equipment in aquaculture settings. Acoustic exposure resulted in ultrastructure changes to otoliths, morphological damage to sensory hair cells of the macula sacculi, and a gradual decrease in the number of functionally active mitochondria in the red blood cells but no changes to telomeres. Changes were apparent following at least ten days of acoustic exposure. These data suggest that acoustic exposure found in some aquaculture settings could cause stress responses and auditory damage to peled and, potentially, other commercially important species. Reducing sound levels in fish rearing facilities could contribute to the formation of effective aquaculture practices that mitigate noise-induced stress in fishes. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/10.0001674 |