Membrane interactions of the anuran antimicrobial peptide HSP1-NH 2 : Different aspects of the association to anionic and zwitterionic biomimetic systems

Studies have suggested that antimicrobial peptides act by different mechanisms, such as micellisation, self-assembly of nanostructures and pore formation on the membrane surface. This work presents an extensive investigation of the membrane interactions of the 14 amino-acid antimicrobial peptide hyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Biomembranes 2021-01, Vol.1863 (1), p.183449
Hauptverfasser: Gomes, Isabela P, Santos, Talita L, de Souza, Amanda N, Nunes, Lúcio O, Cardoso, Gabriele A, Matos, Carolina O, Costa, Lívia M F, Lião, Luciano M, Resende, Jarbas M, Verly, Rodrigo M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies have suggested that antimicrobial peptides act by different mechanisms, such as micellisation, self-assembly of nanostructures and pore formation on the membrane surface. This work presents an extensive investigation of the membrane interactions of the 14 amino-acid antimicrobial peptide hylaseptin P1-NH (HSP1-NH ), derived from the tree-frog Hyla punctata, which has stronger antifungal than antibacterial potential. Biophysical and structural analyses were performed and the correlated results were used to describe in detail the interactions of HSP1-NH with zwitterionic and anionic detergent micelles and phospholipid vesicles. HSP1-NH presents similar well-defined helical conformations in both zwitterionic and anionic micelles, although NMR spectroscopy revealed important structural differences in the peptide N-terminus. H exchange experiments of HSP1-NH indicated the insertion of the most N-terminal residues (1-3) in the DPC-d micelles. A higher enthalpic contribution was verified for the interaction of the peptide with anionic vesicles in comparison with zwitterionic vesicles. The pore formation ability of HSP1-NH (examined by dye release assays) and its effect on the size and surface charge as well as on the lipid acyl chain ordering (evaluated by Fourier-transform infrared spectroscopy) of anionic phospholipid vesicles showed membrane disruption even at low peptide-to-phospholipid ratios, and the effect increases proportionately to the peptide concentration. On the other hand, these biophysical investigations showed that a critical peptide-to-phospholipid ratio around 0.6 is essential for promoting disruption of zwitterionic membranes. In conclusion, this study demonstrates that the binding process of the antimicrobial HSP1-NH peptide depends on the membrane composition and peptide concentration.
ISSN:1879-2642