Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers

Angiogenesis is the process through which new blood vessels are formed from pre-existing ones. Exosomes are involved in angiogenesis in cancer progression by transporting numerous pro-angiogenic biomolecules like vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and microR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-08, Vol.21 (16), p.5840, Article 5840
Hauptverfasser: Olejarz, Wioletta, Kubiak-Tomaszewska, Grazyna, Chrzanowska, Alicja, Lorenc, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiogenesis is the process through which new blood vessels are formed from pre-existing ones. Exosomes are involved in angiogenesis in cancer progression by transporting numerous pro-angiogenic biomolecules like vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and microRNAs. Exosomes promote angiogenesis by suppressing expression of factor-inhibiting hypoxia-inducible factor 1 (HIF-1). Uptake of tumor-derived exosomes (TEX) by normal endothelial cells activates angiogenic signaling pathways in endothelial cells and stimulates new vessel formation. TEX-driven cross-talk of mesenchymal stem cells (MSCs) with immune cells blocks their anti-tumor activity. Effective inhibition of tumor angiogenesis may arrest tumor progression. Bevacizumab, a VEGF-specific antibody, was the first antiangiogenic agent to enter the clinic. The most important clinical problem associated with cancer therapy using VEGF- or VEFGR-targeting agents is drug resistance. Combined strategies based on angiogenesis inhibitors and immunotherapy effectively enhances therapies in various cancers, but effective treatment requires further research.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21165840