The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database
•7 Tesla submillimeter whole-brain dataset.•105 intrinsically aligned quantitative contrasts from a single scan acquisition.•Probabilistic atlases of the basal ganglia based on >1000 manual delineations.•Data freely available for further analyses. Normative databases allow testing of novel hypoth...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2020-11, Vol.221, p.117200-117200, Article 117200 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •7 Tesla submillimeter whole-brain dataset.•105 intrinsically aligned quantitative contrasts from a single scan acquisition.•Probabilistic atlases of the basal ganglia based on >1000 manual delineations.•Data freely available for further analyses.
Normative databases allow testing of novel hypotheses without the costly collection of magnetic resonance imaging (MRI) data. Here we present the Amsterdam Ultra-high field adult lifespan database (AHEAD). The AHEAD consists of 105 7 Tesla (T) whole-brain structural MRI scans tailored specifically to imaging of the human subcortex, including both male and female participants and covering the entire adult life span (18–80 yrs). We used these data to create probability maps for the subthalamic nucleus, substantia nigra, internal and external segment of the globus pallidus, and the red nucleus. Data was acquired at a submillimeter resolution using a multi-echo (ME) extension of the second gradient-echo image of the MP2RAGE sequence (MP2RAGEME) sequence, resulting in complete anatomical alignment of quantitative, R1-maps, R2*-maps, T1-maps, T1-weighted images, T2*-maps, and quantitative susceptibility mapping (QSM). Quantitative MRI maps, and derived probability maps of basal ganglia structures are freely available for further analyses. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2020.117200 |