Enhanced mass transfer and service time of mesh Ti/Sb-SnO 2 electrode for electro-catalytic oxidation of phenol

Titanium-based SnO with Sb dopant (Ti/Sb-SnO ) was of interest in the field of electro-catalytic oxidation due to its high organic oxidation rates. However, the relatively poor mass transfer performance and short service time limited its practical application. To overcome this problem, Ti/Sb-SnO ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-11, Vol.27 (33), p.42072
Hauptverfasser: Huang, Linlin, Li, Da, Liu, Junfeng, Yang, Lisha, Dai, Changchao, Ren, Nanqi, Feng, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titanium-based SnO with Sb dopant (Ti/Sb-SnO ) was of interest in the field of electro-catalytic oxidation due to its high organic oxidation rates. However, the relatively poor mass transfer performance and short service time limited its practical application. To overcome this problem, Ti/Sb-SnO electrode was fabricated on mesh substrate and used as the anode for electrochemical oxidization of phenol. Compared to the anode prepared on planar Ti, the mesh anode with compact and uniform catalyst surface lowered electron transfer resistance and higher O content (17.41%), which benefited the generation of hydroxyl radicals (·OH) (increment of 24.5%). In addition, this structure accelerated the fluid perturbation around electrode in microscopic scale as the COMSOL simulation result indicated; the electric potential on mesh anode varied regularly along the undulant terrain of electrode so that the mass transfer coefficient was enhanced by 1.67 times. These structure-dependent characteristics contributed to the superior electro-catalytic performance toward degradation of phenol. Experimental results showed that mesh anode had a higher TOC removal efficiency of 90.6% and mineralization current efficiency of 20.1% at current density of 10 mA cm , which was 9.95% and 21.6% higher than the planar anode, and the service lifetime was 1.89 times longer than planar anode. This highly electro-catalytically active and stable Ti/Sb-SnO mesh electrode showed a potential application prospect toward electro-catalytic degradation process.
ISSN:1614-7499