β-catenin S45F mutation results in apoptotic resistance
Wnt/β-catenin signaling is one of the key cascades regulating embryogenesis and tissue homeostasis; it has also been intimately associated with carcinogenesis. This pathway is deregulated in several tumors, including colorectal cancer, breast cancer, and desmoid tumors. It has been shown that CTNNB1...
Gespeichert in:
Veröffentlicht in: | Oncogene 2020-08, Vol.39 (34), p.5589-5600 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wnt/β-catenin signaling is one of the key cascades regulating embryogenesis and tissue homeostasis; it has also been intimately associated with carcinogenesis. This pathway is deregulated in several tumors, including colorectal cancer, breast cancer, and desmoid tumors. It has been shown that
CTNNB1
exon 3 mutations are associated with an aggressive phenotype in several of these tumor types and may be associated with therapeutic tolerance. Desmoid tumors typically have a stable genome with β-catenin mutations as a main feature, making these tumors an ideal model to study the changes associated with different types of β-catenin mutations. Here, we show that the apoptosis mechanism is deregulated in β-catenin S45F mutants, resulting in decreased induction of apoptosis in these cells. Our findings also demonstrate that
RUNX3
plays a pivotal role in the inhibition of apoptosis found in the β-catenin S45F mutants. Restoration of
RUNX3
overcomes this inhibition in the S45F mutants, highlighting it as a potential therapeutic target for malignancies harboring this specific
CTNNB1
mutation. While the regulatory effect of RUNX3 in β-catenin is already known, our results suggest the possibility of a feedback loop involving these two genes, with the
CTNNB1
S45F mutation downregulating expression of
RUNX3
, thus providing additional possible novel therapeutic targets for tumors having deregulated Wnt/β-catenin signaling induced by this mutation. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/s41388-020-1382-5 |