Automated Optical‐Tweezers Assembly of Engineered Microgranular Crystals

In this work, a scalable automated approach for fabricating 3D microgranular crystals consisting of desired arrangements of microspheres using holographic optical tweezers and two‐photon polymerization is introduced. The ability to position microspheres as desired within lattices of any configuratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-06, Vol.16 (25), p.e2000314-n/a, Article 2000314
Hauptverfasser: Chizari, Samira, Lim, Miles P., Shaw, Lucas A., Austin, Sydney P., Hopkins, Jonathan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a scalable automated approach for fabricating 3D microgranular crystals consisting of desired arrangements of microspheres using holographic optical tweezers and two‐photon polymerization is introduced. The ability to position microspheres as desired within lattices of any configuration allows designers to engineer the behavior of new metamaterials that enable advanced applications (e.g., armor that mitigates or redirects shock waves, acoustic lens for underwater imaging, damage detection, and noninvasive surgery, acoustic cloaking, and photonic crystals). Currently, no self‐assembly or automated approaches exist with the flexibility necessary to place specific microspheres at specific locations within a crystal. Moreover, most pick‐and‐place approaches require the manual assembly of spheres one by one and thus do not achieve the speed and precision required to repeatably fabricate practical volumes of engineered crystals. In this paper, the rapid assembly of 4.86 µm diameter silica spheres within differently packed 3D crystal‐lattice examples of unprecedented size using fully automated optical tweezers is demonstrated. The optical tweezers independently and simultaneously assemble batches of spheres that are dispensed to the build site via an automated syringe pump where the spheres are then joined together within previously unattainable patterns by curing regions of photocurable prepolymer between each sphere using two‐photon polymerization. An automated approach for fabricating microgranular crystals consisting of desired arrangements of microspheres is introduced. Microspheres suspended in a photocurable polymer are pumped to a build site where optical tweezers simultaneously move them to their intended position within the crystal and two‐photon polymerization is used to join them together by curing the region of polymer between them and their neighbors.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202000314