Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals

Knowledge of global patterns of biodiversity, ranging from intraspecific genetic diversity (GD) to taxonomic and phylogenetic diversity, is essential for identifying and conserving the processes that shape the distribution of life. Yet, global patterns of GD and its drivers remain elusive. Here we a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-05, Vol.11 (1), p.2557-11, Article 2557
Hauptverfasser: Theodoridis, Spyros, Fordham, Damien A., Brown, Stuart C., Li, Sen, Rahbek, Carsten, Nogues-Bravo, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knowledge of global patterns of biodiversity, ranging from intraspecific genetic diversity (GD) to taxonomic and phylogenetic diversity, is essential for identifying and conserving the processes that shape the distribution of life. Yet, global patterns of GD and its drivers remain elusive. Here we assess existing biodiversity theories to explain and predict the global distribution of GD in terrestrial mammal assemblages. We find a strong positive covariation between GD and interspecific diversity, with evolutionary time, reflected in phylogenetic diversity, being the best predictor of GD. Moreover, we reveal the negative effect of past rapid climate change and the positive effect of inter-annual precipitation variability in shaping GD. Our models, explaining almost half of the variation in GD globally, uncover the importance of deep evolutionary history and past climate stability in accumulating and maintaining intraspecific diversity, and constitute a crucial step towards reducing the Wallacean shortfall for an important dimension of biodiversity. The drivers of genetic diversity (GD) are poorly understood at the global scale. Here the authors show, for terrestrial mammals, that within-species GD covaries with phylogenetic diversity and is higher in locations with more stable past climates. They also interpolate GD for data-poor locations such as the tropics.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16449-5