The 5,6,7,8-Tetrahydro-2-Naphthoyl-Coenzyme A Reductase Reaction in the Anaerobic Degradation of Naphthalene and Identification of Downstream Metabolites

Anaerobic degradation of polycyclic aromatic hydrocarbons has been investigated mostly with naphthalene as a model compound. Naphthalene degradation by sulfate-reducing bacteria proceeds via carboxylation to 2-naphthoic acid, formation of a coenzyme A thioester, and subsequent reduction to 5,6,7,8-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2020-07, Vol.86 (15), Article 00996
Hauptverfasser: Weyrauch, Philip, Heker, Isabelle, Zaytsev, Andrey, von Hagen, Christian A., Arnold, Meike E., Golding, Bernard T., Meckenstock, Rainer U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anaerobic degradation of polycyclic aromatic hydrocarbons has been investigated mostly with naphthalene as a model compound. Naphthalene degradation by sulfate-reducing bacteria proceeds via carboxylation to 2-naphthoic acid, formation of a coenzyme A thioester, and subsequent reduction to 5,6,7,8-tetrahydro-2-naphthoylcoenzyme A (THNCoA), which is further reduced to hexahydro-2-naphthoyl-CoA (HHNCoA) by tetrahydronaphthoyl-CoA reductase (THNCoA reductase), an enzyme similar to class I benzoyl-CoA reductases. When analyzing THNCoA reductase assays with crude cell extracts and NADH as electron donor via liquid chromatography-mass spectrometry (LC-MS), scanning for putative metabolites, we found that small amounts of the product of an HHNCoA hydratase were formed in the assays, but the downstream conversion by an NAD(+)-dependent beta-hydroxyacyl-CoA dehydrogenase was prevented by the excess of NADH in those assays. Experiments with alternative electron donors indicated that 2-oxoglutarate can serve as an indirect electron donor for the THNCoA-reducing system via a 2-oxoglutarate:ferredoxin oxidoreductase. With 2-oxoglutarate as electron donor, THNCoA was completely converted and further metabolites resulting from subsequent beta-oxidation-like reactions and hydrolytic ring cleavage were detected. These metabolites indicate a downstream pathway with water addition to HHNCoA and ring fission via a hydrolase acting on a beta'-hydroxy-beta-oxo-decahydro-2-naphthoyl-CoA intermediate. Formation of the downstream intermediate cis-2-carboxycyclohexylacetyl-CoA, which is the substrate for the previously described lower degradation pathway leading to the central metabolism, completes the anaerobic degradation pathway of naphthalene. IMPORTANCE Anaerobic degradation of polycyclic aromatic hydrocarbons is poorly investigated despite its significance in anoxic sediments. Using alternative electron donors for the 5,6,7,8-tetrahydro-2-naphthoyl-CoA reductase reaction, we observed intermediary metabolites of anaerobic naphthalene degradation via in vitro enzyme assays with cell extracts of anaerobic naphthalene degraders. The identified metabolites provide evidence that ring reduction terminates at the stage of hexahydro-2-naphthoyl-CoA and a sequence of beta-oxidation-like degradation reactions starts with a hydratase acting on this intermediate. The final product of this reaction sequence was identified as cis-2-carboxycyclohexylacetyl-CoA, a compound for which a further
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.00996-20