Metal-organic framework-based nanomaterials for photocatalytic hydrogen peroxide production

As an environmentally friendly and renewable energy source, hydrogen peroxide (H 2 O 2 ) could be produced photocatalytically through selective two-electron reduction of O 2 using effective photocatalysts. Metal organic frameworks (MOFs), as hybrid porous materials consisting of organic linkers and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-07, Vol.22 (26), p.1444-14414
Hauptverfasser: Chen, Xiaolang, Kondo, Yoshifumi, Kuwahara, Yasutaka, Mori, Kohsuke, Louis, Catherine, Yamashita, Hiromi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As an environmentally friendly and renewable energy source, hydrogen peroxide (H 2 O 2 ) could be produced photocatalytically through selective two-electron reduction of O 2 using effective photocatalysts. Metal organic frameworks (MOFs), as hybrid porous materials consisting of organic linkers and metal oxide clusters, have aroused great interest in the design of effective catalysts for photocatalysis under visible light irradiation due to their unique properties, such as large surface area, good chemical stability, and diverse and tunable chemical components. In this perspective, we highlight our recent progress in the application of various MOF-based nanomaterials for photocatalytic H 2 O 2 production from the selective two-electron reduction of O 2 in a single-phase system (acetonitrile) and two-phase system (water/benzyl alcohol). Photocatalytic H 2 O 2 production in the single-phase system achieved a higher activity using NiO as a cocatalyst of the MOF rather than Pt. Photocatalytic H 2 O 2 production in the two-phase system using various hydrophobic MOFs showed further improved activity compared to the single-phase system. It has been possible to design a hydrophobic MOF-based photocatalyst with high activity and stability under recycling conditions. These studies gathered in this perspective revealed the novel application of MOFs in the field of energy production. Metal-organic frameworks act as efficient photocatalysts for visible-light driven hydrogen peroxide production in a single-phase system and two-phase system.
ISSN:1463-9076
1463-9084
DOI:10.1039/d0cp01759k