Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing
In this Letter, we present a 3D-printed complex wide-angle multi-element Hypergon micro-objective, composed of aspherical lenses smaller than 1 mm, which exhibits distortion-free imaging performance. The objective is fabricated by a multi-step femtosecond two-photon lithography process. To realize t...
Gespeichert in:
Veröffentlicht in: | Optics letters 2020-05, Vol.45 (10), p.2784-2787 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this Letter, we present a 3D-printed complex wide-angle multi-element Hypergon micro-objective, composed of aspherical lenses smaller than 1 mm, which exhibits distortion-free imaging performance. The objective is fabricated by a multi-step femtosecond two-photon lithography process. To realize the design, we apply a novel (to the best of our knowledge) approach using shadow evaporation to create highly non-transparent aperture stops, which are crucial components in many optical systems. We achieve a field-of-view (FOV) of 70 degrees, at a resolution of 12.4 mu m, and distortion-free imaging over the entire FOV. In the future, such objectives can be directly printed onto complementary metal-oxide-semiconductor (CMOS) imaging chips to produce extremely compact, high-quality image sensors to yield integrated sensor devices used in industry. (C) 2020 Optical Society of America |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.392253 |