Repurposing of chlorpromazine in COVID-19 treatment: the reCoVery study

The ongoing COVID-19 pandemic comprises a total of more than 2,350,000 cases and 160,000 deaths. The interest in anti-coronavirus drug development has been limited so far and effective methods to prevent or treat coronavirus infections in humans are still lacking. Urgent action is needed to fight th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Encéphale 2020-06, Vol.46 (3S), p.S35
Hauptverfasser: Plaze, M, Attali, D, Petit, A-C, Blatzer, M, Simon-Loriere, E, Vinckier, F, Cachia, A, Chrétien, F, Gaillard, R
Format: Artikel
Sprache:fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing COVID-19 pandemic comprises a total of more than 2,350,000 cases and 160,000 deaths. The interest in anti-coronavirus drug development has been limited so far and effective methods to prevent or treat coronavirus infections in humans are still lacking. Urgent action is needed to fight this fatal coronavirus infection by reducing the number of infected people along with the infection contagiousness and severity. Since the beginning of the COVID-19 outbreak several weeks ago, we observe in GHU PARIS Psychiatrie & Neurosciences (Sainte-Anne hospital, Paris, France) a lower prevalence of symptomatic and severe forms of COVID-19 infections in psychiatric patients (∼4%) compared to health care professionals (∼14%). Similar observations have been noted in other psychiatric units in France and abroad. Our hypothesis is that psychiatric patients could be protected from severe forms of COVID-19 by their psychotropic treatments. Chlorpromazine (CPZ) is a phenothiazine derivative widely used in clinical routine in the treatment of acute and chronic psychoses. This first antipsychotic medication has been discovered in 1952 by Jean Delay and Pierre Deniker at Sainte-Anne hospital. In addition, to its antipsychotic effects, several in vitro studies have also demonstrated a CPZ antiviral activity via the inhibition of clathrin-mediated endocytosis. Recently, independent studies revealed that CPZ is an anti-MERS-CoV and an anti-SARS-CoV-1 drug. In comparison to other antiviral drugs, the main advantages of CPZ lie in its biodistribution: (i) preclinical and clinical studies have reported a high CPZ concentration in the lungs (20-200 times higher than in plasma), which is critical because of the respiratory tropism of SARS-CoV-2; (ii) CPZ is highly concentrated in saliva (30-100 times higher than in plasma) and could therefore reduce the contagiousness of COVID-19; (iii) CPZ can cross the blood-brain barrier and could therefore prevent the neurological forms of COVID-19. Our hypothesis is that CPZ could decrease the unfavorable evolution of COVID-19 infection in oxygen-requiring patients without the need for intensive care, but also reduce the contagiousness of SARS-CoV-2. At this end, we designed a pilot, phase III, multicenter, single blind, randomized controlled clinical trial. Efficacy of CPZ will be assessed according to clinical, biological and radiological criteria. The main objective is to demonstrate a shorter time to response (TTR) to treatment in the
ISSN:0013-7006
DOI:10.1016/j.encep.2020.04.010