An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions
Wetlands are a major source of methane (CH4) and contribute between 30 and 40% to the total CH4 emissions. Wetland CH4 emissions depend on temperature, water table depth, and both the quantity and quality of organic matter. Global warming will affect these three drivers of methanogenesis, raising qu...
Gespeichert in:
Veröffentlicht in: | Science advances 2020-04, Vol.6 (15), p.eaay4444-eaay4444, Article 4444 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wetlands are a major source of methane (CH4) and contribute between 30 and 40% to the total CH4 emissions. Wetland CH4 emissions depend on temperature, water table depth, and both the quantity and quality of organic matter. Global warming will affect these three drivers of methanogenesis, raising questions about the feedbacks between natural methane production and climate change. Until present the large-scale response of wetland CH4 emissions to climate has been investigated with land-surface models that have produced contrasting results. Here, we produce a novel global estimate of wetland methane emissions based on atmospheric inverse modeling of CH4 fluxes and observed temperature and precipitation. Our data-driven model suggests that by 2100, current emissions may increase by 50% to 80%, which is within the range of 50% and 150% reported in previous studies. This finding highlights the importance of limiting global warming below 2 degrees C to avoid substantial climate feedbacks driven by methane emissions from natural wetlands. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aay4444 |