Tridirectional Transfer Learning for Predicting Gastric Cancer Morbidity

Our previous study has constructed a deep learning model for predicting gastrointestinal infection morbidity based on environmental pollutant indicators in some regions in central China. This article aims to adapt the prediction model for three purposes: 1) predicting the morbidity of a different di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2021-02, Vol.32 (2), p.561-574
Hauptverfasser: Song, Qin, Zheng, Yu-Jun, Sheng, Wei-Guo, Yang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our previous study has constructed a deep learning model for predicting gastrointestinal infection morbidity based on environmental pollutant indicators in some regions in central China. This article aims to adapt the prediction model for three purposes: 1) predicting the morbidity of a different disease in the same region; 2) predicting the morbidity of the same disease in a different region; and 3) predicting the morbidity of a different disease in a different region. We propose a tridirectional transfer learning approach, which achieves the abovementioned three purposes by: 1) developing a combined univariate regression and multivariate Gaussian model for establishing the relationship between the morbidity of the target disease and that of the source disease together with the high-level pollutant features in the current source region; 2) using mapping-based deep transfer learning to extend the current model to predict the morbidity of the source disease in both source and target regions; and 3) applying the pattern of the combined model in the source region to the extended model to derive a new combined model for predicting the morbidity of the target disease in the target region. We select gastric cancer as the target disease and use the proposed transfer learning approach to predict its morbidity in the source region and three target regions. The results show that, given only a limited number of labeled samples, our approach achieves an average prediction accuracy of over 80% in the source region and up to 78% in the target regions, which can contribute considerably to improving medical preparedness and response.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2020.2979486