USF1-mediated upregulation of lncRNA GAS6-AS2 facilitates osteosarcoma progression through miR-934/BCAT1 axis

Long noncoding RNAs (lncRNAs) have been certified as important regulators in tumorigenesis. LncRNA GAS6-AS2 (GAS6-AS2) was a newly identified tumor-related lncRNA, and its dysregulation and oncogenic effects in melanoma and bladder cancer had been reported in previous studies. However, the expressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging (Albany, NY.) NY.), 2020-04, Vol.12 (7), p.6172-6190
Hauptverfasser: Wei, Guojun, Zhang, Tianwei, Li, Zongguang, Yu, Naichun, Xue, Xiang, Zhou, Daguo, Chen, Yongjie, Zhang, Linlin, Yao, Xiaoli, Ji, Guangrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long noncoding RNAs (lncRNAs) have been certified as important regulators in tumorigenesis. LncRNA GAS6-AS2 (GAS6-AS2) was a newly identified tumor-related lncRNA, and its dysregulation and oncogenic effects in melanoma and bladder cancer had been reported in previous studies. However, the expression pattern and potential function of GAS6-AS2 in osteosarcoma (OS) have not been investigated. In this study, we identified a novel OS-related lncRNA GAS6-AS2. We found that GAS6-AS2 was distinctly upregulated in both OS specimens and cell lines. Distinct up-regulation of GAS6-AS2 in OS was correlated with advanced clinical stages and shorter survivals. In addition, USF1 could directly bind to the GAS6-AS2 promoter and contribute to its overexpression. Furthermore, GAS6-AS2 knockdown caused tumor suppressive effects via reducing cellular proliferation, migration and invasion, and promoting OS cell apoptosis. Besides, GAS6-AS2 directly bound to miR-934 and downregulated its expression. Mechanistically, GAS6-AS2 positively regulated the expression of BCAT1 through sponging miR-934. Taken together, our data illustrated how GAS6-AS2 played an oncogenic role in OS and might offer a potential therapeutic target for treating OS.
ISSN:1945-4589
1945-4589
DOI:10.18632/aging.103015