Roughness-Induced Friction on Liquid Foams
Complex liquids flow is known to be drastically affected by the roughness condition at the interfaces. We combined stresses measurements and observations of the flow during the motion of different rough surfaces in dry liquid foams. We visually show that three distinct friction regimes exist: slippa...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-03, Vol.124 (11), p.118003-118003, Article 118003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Complex liquids flow is known to be drastically affected by the roughness condition at the interfaces. We combined stresses measurements and observations of the flow during the motion of different rough surfaces in dry liquid foams. We visually show that three distinct friction regimes exist: slippage, stick-slip motion, and anchored soap films. Our stress measurements are validated for slippage and anchored regimes based on existing models, and we propose a leverage rule to describe the stresses during the stick-slip regime. We find that the occurrence of the stick-slip or anchored regimes is controlled by the roughness factor, defined as the ratio between the size of the surface asperities and the radius of curvature of the Plateau borders. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.124.118003 |