Sex-specific responses of Populus deltoides to interaction of cadmium and salinity in root systems

More research about branch order-specific accumulation of toxic ions in root systems is needed to know root branch-related responses in growth and physiology. In this study, we used Populus deltoides females and males as a model to detect sex-specific differences in physiology, biochemistry, ultrast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2020-06, Vol.195, p.110437, Article 110437
Hauptverfasser: Hao, Linting, Chen, Lianghua, Zhu, Peng, Zhang, Jian, Zhang, Danju, Xiao, Jiujin, Xu, Zhenfeng, Zhang, Li, Liu, Yang, Li, Han, Yang, Hanbo, Cao, Guoxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:More research about branch order-specific accumulation of toxic ions in root systems is needed to know root branch-related responses in growth and physiology. In this study, we used Populus deltoides females and males as a model to detect sex-specific differences in physiology, biochemistry, ultrastructure of absorbing roots and distribution of toxic ions in heterogeneous root systems under Cd, salinity and combined stress. Healthy annual male and female plants of P. deltoides were cultivated in soils including 5 mg kg−1 of Cd, 0.2% (w/w) of NaCl and their combination for a growth season. Our results are mainly as follows: (1) females suffered more growth inhibition, root biomass decline, root viability depression, and damage to distal root cells, but lower ability to scavenge reactive oxygen species (ROS) than the males under all stresses; (2) In both sexes, salinity adopted in the present study caused more significant negative effects on growth and organelles integrity than Cd stress, while interaction treatment did not induced a further depression in growth or more impairments in root cells of both sexes in comparison to salinity, indicating influence of combined stress was not equal simply to a superposition of the effects caused by single factors; (3) Cd and Na accumulation in root systems is highly heterogeneous and branch order-specific, with lower-order roots containing more Cd2+ but less Na+, and higher-order roots accumulating more Na+ but less Cd2+. Besides, it is noteworthy that females accumulated more Cd2+ in 1–2 order roots and more Na+ in 1–3 order roots than males under the interaction treatment. These results indicated that strategies in toxic ions accumulation in heterogeneous root systems of P. deltoides was highly branch order-specific, and may closely correlate with sex-specific root growth and physiological responses to the interaction of Cd and salinity. •Sexual dimorphism of poplar to Cd and salinity stress is further affirmed in a fine-root system.•Populus deltoides females suffered more growth inhibition than males under all stresses in roots.•Sexual differences were more significant under stresses including salinity.•Within root branch orders, both Cd2+ and Na+ distribution are highly heterogeneous.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2020.110437