A Universal Approximation Result for Difference of Log-Sum-Exp Neural Networks

We show that a neural network whose output is obtained as the difference of the outputs of two feedforward networks with exponential activation function in the hidden layer and logarithmic activation function in the output node, referred to as log-sum-exp (LSE) network, is a smooth universal approxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2020-12, Vol.31 (12), p.5603-5612
Hauptverfasser: Calafiore, Giuseppe C., Gaubert, Stephane, Possieri, Corrado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a neural network whose output is obtained as the difference of the outputs of two feedforward networks with exponential activation function in the hidden layer and logarithmic activation function in the output node, referred to as log-sum-exp (LSE) network, is a smooth universal approximator of continuous functions over convex, compact sets. By using a logarithmic transform, this class of network maps to a family of subtraction-free ratios of generalized posynomials (GPOS), which we also show to be universal approximators of positive functions over log-convex, compact subsets of the positive orthant. The main advantage of difference-LSE networks with respect to classical feedforward neural networks is that, after a standard training phase, they provide surrogate models for a design that possesses a specific difference-of-convex-functions form, which makes them optimizable via relatively efficient numerical methods. In particular, by adapting an existing difference-of-convex algorithm to these models, we obtain an algorithm for performing an effective optimization-based design. We illustrate the proposed approach by applying it to the data-driven design of a diet for a patient with type-2 diabetes and to a nonconvex optimization problem.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2020.2975051