Spin structure relation to phase contrast imaging of isolated magnetic Bloch and Néel skyrmions

•Relation of skyrmion spin structure to magnetic phase contrast.•First DPC measurement of room-temperature magnetic Neel Skyrmions.•Universal results applicable to holography, Fresnel and DPC LTEM. Magnetic skyrmions are promising candidates for future storage devices with a large data density. A gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2020-05, Vol.212, p.112973-112973, Article 112973
Hauptverfasser: Pöllath, S., Lin, T., Lei, N., Zhao, W., Zweck, J., Back, C.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Relation of skyrmion spin structure to magnetic phase contrast.•First DPC measurement of room-temperature magnetic Neel Skyrmions.•Universal results applicable to holography, Fresnel and DPC LTEM. Magnetic skyrmions are promising candidates for future storage devices with a large data density. A great variety of materials have been found that host skyrmions up to the room-temperature regime. Lorentz microscopy, usually performed in a transmission electron microscope (TEM), is one of the most important tools for characterizing skyrmion samples in real space. Using numerical calculations, this work relates the phase contrast in a TEM to the actual magnetization profile of an isolated Néel or Bloch skyrmion, the two most common skyrmion types. Within the framework of the used skyrmion model, the results are independent of skyrmion size and wall width and scale with sample thickness for purely magnetic specimens. Simple rules are provided to extract the actual skyrmion configuration of pure Bloch or Néel skyrmions without the need of simulations. Furthermore, first differential phase contrast (DPC) measurements on Néel skyrmions that meet experimental expectations are presented and showcase the described principles. The work is relevant for material sciences where it enables the engineering of skyrmion profiles via convenient characterization.
ISSN:0304-3991
1879-2723
DOI:10.1016/j.ultramic.2020.112973