Fabrication of hydrolytically stable magnetic core-shell aminosilane nanocomposite for the adsorption of PFOS and PFOA
Aminosilane materials, with their low cost and ease of modification, have exhibited great potential for the adsorption of perfluorinated compounds (PFCs) from water. However, this kind of material may be facing two drawbacks during its application: low resistance to hydrolysis and difficulties in se...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2020-07, Vol.251, p.126384-126384, Article 126384 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aminosilane materials, with their low cost and ease of modification, have exhibited great potential for the adsorption of perfluorinated compounds (PFCs) from water. However, this kind of material may be facing two drawbacks during its application: low resistance to hydrolysis and difficulties in separation from the water matrix. This work proposed a strategy of grafting N-(2-aminoethyl) aminopropyltrimethoxysilane (AE-APTMS) on the surface of magnetic γ-Fe2O3 nanoparticles by full utilization of the sorption sites provided by the aminosilane and the magnetism by γ-Fe2O3. The FTIR and XRD results verified the formation of the magnetic AE-APTMS nanocomposite. The core-shell nanocomposite showed a superparamagnetic property and an isoelectric point at pH = 8.2. Particularly, compared to the aminopropyltriethoxysilane (APTES) nanocomposite, the AE-APTMS nanocomposite exhibited improved hydrolytic stability with 60% less loss of the amine groups during the 48 h adsorption process, as the longer alkyl chain hindered the aminosilane detachment. The AE-APTMS nanocomposite exhibited a rapid adsorption with the removal efficiency of 78% for perfluorooctane sulfonate (PFOS) and 65% for perfluorooctanoate (PFOA) due to the electrostatic interaction and hydrophobic interaction. The regeneration and reuse of the magnetic AE-APTMS nanocomposite were conveniently realized with the removal efficiency higher than 70% for both PFOS and PFOA even after 15 adsorption-desorption cycles. The stable magnetic aminosilane nanocomposite with the ease of separation may provide a new strategy to achieve the economical and effective removal of typical PFCs from water.
[Display omitted]
•Magnetic aminosilane nanocomposite was prepared with enhanced hydrolytic stability.•The AE-APTMS could discourage the amine-catalyzed detachment of functional amines.•γ-Fe2O3 as the core with magnetism, and aminosilane as the shell with sorption sites.•Magnetic nanocomposite achieved rapid adsorption for PFOS/A.•Magnetic nanocomposite were regenerated and reused in 15 successive cycles. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.126384 |