A new rat model of treatment-naive quiescent choroidal neovascularization induced by human VEGF165 overexpression
Vascular endothelial growth factor (VEGF) is a crucial stimulator for choroidal neovascularization (CNV). Our aim was to develop a reproducible and valid treatment-naive quiescent CNV (i.e. without signs of exudation and with normal visual acuity) rat model by subretinal injection of an adeno-associ...
Gespeichert in:
Veröffentlicht in: | Biology open 2020-06, Vol.9 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vascular endothelial growth factor (VEGF) is a crucial stimulator for choroidal neovascularization (CNV). Our aim was to develop a reproducible and valid treatment-naive quiescent CNV (i.e. without signs of exudation and with normal visual acuity) rat model by subretinal injection of an adeno-associated virus (AAV)-VEGFA165 vector. The CNV development was longitudinally followed up
by scanning laser ophthalmoscopy/optical coherence tomography, fluorescein and Indocyanine Green angiographies and
by electron microscopy (EM) and immunohistochemistry. In total, 57 eyes were analysed.
, a quiescent CNV was observed in 93% of the eyes 6 weeks post-transduction. In EM, CNV vessels with few fenestrations, multi-layered basement membranes and bifurcation of endothelial cells were observed sharing the human CNV features. Human VEGF overexpression, multi-layered retinal pigment epithelium (RPE) (RPE65) and macrophages/activated microglia (Iba1) were also detected. In addition, 19 CNV eyes were treated for up to 3 weeks with bevacizumab. The retinal and CNV lesion thickness decreased significantly in bevacizumab-treated CNV eyes compared with untreated CNV eyes 1 week after the treatment. In conclusion, our experimental CNV resembles those seen in patients suffering from treatment-naive quiescent CNV in wet age-related macular degeneration (AMD), and responds to short-term treatment with bevacizumab. Our new model can, therefore, be used to test the long-term effect of new drugs targeting CNV under precisely-defined conditions. |
---|---|
ISSN: | 2046-6390 2046-6390 |
DOI: | 10.1242/bio.048736 |