Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles

The design and discovery of new two-dimensional materials with desired structures and properties are always one of the most fundamental goals in materials science. Here we present an atom-mimicking design concept to achieve direct self-assembly of two-dimensional low-coordinated open lattices using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-02, Vol.12 (7), p.4544-4551
Hauptverfasser: Li, Zhan-Wei, Sun, Yu-Wei, Wang, Yan-Hui, Zhu, You-Liang, Lu, Zhong-Yuan, Sun, Zhao-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design and discovery of new two-dimensional materials with desired structures and properties are always one of the most fundamental goals in materials science. Here we present an atom-mimicking design concept to achieve direct self-assembly of two-dimensional low-coordinated open lattices using three-dimensional patchy particle systems. Besides honeycomb lattices, a new type of two-dimensional square-octagon lattice is obtained through rational design of the patch configuration of soft three-patch particles. However, unexpectedly the building blocks with thermodynamically favoured patch configuration cannot form square-octagon lattices in our simulations. We further reveal the kinetic mechanisms controlling the formation of the honeycomb and square-octagon lattices. The results indicate that the kinetically favoured intermediates play a critical role in determining the structure of obtained open lattices. This kinetics-controlled design principle provides a particularly effective and extendable framework to construct other novel open lattice structures. Two-dimensional low-coordinated open lattices, including honeycomb lattices and square-octagon lattices previously unreported in colloid science, are obtained through the self-assembly of atom-mimicking patchy particles.
ISSN:2040-3364
2040-3372
DOI:10.1039/c9nr09656f