Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond
Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectros...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-01, Vol.124 (2), p.023602, Article 023602 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 023602 |
container_title | Physical review letters |
container_volume | 124 |
creator | Trusheim, Matthew E. Pingault, Benjamin Wan, Noel H. Gundogan, Mustafa De Santis, Lorenzo Debroux, Romain Gangloff, Dorian Purser, Carola Chen, Kevin C. Walsh, Michael Rose, Joshua J. Becker, Jonas N. Lienhard, Benjamin Bersin, Eric Paradeisanos, Ioannis Wang, Gang Lyzwa, Dominika Montblanch, Alejandro R-P. Malladi, Girish Bakhru, Hassaram Ferrari, Andrea C. Walmsley, Ian A. Atature, Mete Englund, Dirk |
description | Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T (1) > 10 ms, and the coherence time, T-2* reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications. |
doi_str_mv | 10.1103/PhysRevLett.124.023602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32004012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344259698</sourcerecordid><originalsourceid>FETCH-LOGICAL-p206t-fa4329cb5de614c7e473e423e27c96fb8ecf57f7b37fa4b587e63bbed14c77543</originalsourceid><addsrcrecordid>eNqN0F9LwzAQAPAgipvTrzAKPkrn5U-b9lHqpkLBodPXkrZXlmGT2qbKvr2Rqc9C4HLwuzvuCJlTWFAK_Hq93Q9P-JGjcwvKxAIYj4EdkSkFmYaSUnFMpgCchimAnJCzYdgBAGVxckomnAEIn0zJctMrMzS2b8Nct9phHay31lkzBKvetoEKMrvFHo0LNtqEr6pSptoHz502gX-3WrXW1OfkpFFvA178xBl5WS032X2YP949ZDd52DGIXdgowVlalVGNMRWVRCE5CsaRySqNmzLBqolkI0suPS2jRGLMyxLrbywjwWfk8tC36-37iIMrdnbsjR9ZMC4Ei9I4Tbya_6ixbLEuul63qt8Xv1t7kBzAJ5a2GSqNpsI_5s8UgYx4mvgfsEw75bQ1mR2N86VX_y_lX0rvfAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344259698</pqid></control><display><type>article</type><title>Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond</title><source>American Physical Society Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Trusheim, Matthew E. ; Pingault, Benjamin ; Wan, Noel H. ; Gundogan, Mustafa ; De Santis, Lorenzo ; Debroux, Romain ; Gangloff, Dorian ; Purser, Carola ; Chen, Kevin C. ; Walsh, Michael ; Rose, Joshua J. ; Becker, Jonas N. ; Lienhard, Benjamin ; Bersin, Eric ; Paradeisanos, Ioannis ; Wang, Gang ; Lyzwa, Dominika ; Montblanch, Alejandro R-P. ; Malladi, Girish ; Bakhru, Hassaram ; Ferrari, Andrea C. ; Walmsley, Ian A. ; Atature, Mete ; Englund, Dirk</creator><creatorcontrib>Trusheim, Matthew E. ; Pingault, Benjamin ; Wan, Noel H. ; Gundogan, Mustafa ; De Santis, Lorenzo ; Debroux, Romain ; Gangloff, Dorian ; Purser, Carola ; Chen, Kevin C. ; Walsh, Michael ; Rose, Joshua J. ; Becker, Jonas N. ; Lienhard, Benjamin ; Bersin, Eric ; Paradeisanos, Ioannis ; Wang, Gang ; Lyzwa, Dominika ; Montblanch, Alejandro R-P. ; Malladi, Girish ; Bakhru, Hassaram ; Ferrari, Andrea C. ; Walmsley, Ian A. ; Atature, Mete ; Englund, Dirk</creatorcontrib><description>Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T (1) > 10 ms, and the coherence time, T-2* reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.023602</identifier><identifier>PMID: 32004012</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Color centers ; Diamonds ; Dilution ; Electron spin ; Electronic structure ; Emitters ; Emitters (electron) ; Nuclear spin ; Optical properties ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Qubits (quantum computing) ; Radiative lifetime ; Refrigeration ; Science & Technology ; Transportation networks ; Vacancies</subject><ispartof>Physical review letters, 2020-01, Vol.124 (2), p.023602, Article 023602</ispartof><rights>Copyright American Physical Society Jan 17, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>117</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000507539800002</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p206t-fa4329cb5de614c7e473e423e27c96fb8ecf57f7b37fa4b587e63bbed14c77543</cites><orcidid>0000-0003-0179-3412 ; 0000-0001-9534-8541 ; 0000-0001-5241-4131 ; 0000-0002-7100-0847 ; 0000-0002-1043-3489 ; 0000-0003-3320-5291 ; 0000-0002-0069-4386 ; 0000-0003-2065-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,28257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32004012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trusheim, Matthew E.</creatorcontrib><creatorcontrib>Pingault, Benjamin</creatorcontrib><creatorcontrib>Wan, Noel H.</creatorcontrib><creatorcontrib>Gundogan, Mustafa</creatorcontrib><creatorcontrib>De Santis, Lorenzo</creatorcontrib><creatorcontrib>Debroux, Romain</creatorcontrib><creatorcontrib>Gangloff, Dorian</creatorcontrib><creatorcontrib>Purser, Carola</creatorcontrib><creatorcontrib>Chen, Kevin C.</creatorcontrib><creatorcontrib>Walsh, Michael</creatorcontrib><creatorcontrib>Rose, Joshua J.</creatorcontrib><creatorcontrib>Becker, Jonas N.</creatorcontrib><creatorcontrib>Lienhard, Benjamin</creatorcontrib><creatorcontrib>Bersin, Eric</creatorcontrib><creatorcontrib>Paradeisanos, Ioannis</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Lyzwa, Dominika</creatorcontrib><creatorcontrib>Montblanch, Alejandro R-P.</creatorcontrib><creatorcontrib>Malladi, Girish</creatorcontrib><creatorcontrib>Bakhru, Hassaram</creatorcontrib><creatorcontrib>Ferrari, Andrea C.</creatorcontrib><creatorcontrib>Walmsley, Ian A.</creatorcontrib><creatorcontrib>Atature, Mete</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><title>Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond</title><title>Physical review letters</title><addtitle>PHYS REV LETT</addtitle><addtitle>Phys Rev Lett</addtitle><description>Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T (1) > 10 ms, and the coherence time, T-2* reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.</description><subject>Color centers</subject><subject>Diamonds</subject><subject>Dilution</subject><subject>Electron spin</subject><subject>Electronic structure</subject><subject>Emitters</subject><subject>Emitters (electron)</subject><subject>Nuclear spin</subject><subject>Optical properties</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Qubits (quantum computing)</subject><subject>Radiative lifetime</subject><subject>Refrigeration</subject><subject>Science & Technology</subject><subject>Transportation networks</subject><subject>Vacancies</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqN0F9LwzAQAPAgipvTrzAKPkrn5U-b9lHqpkLBodPXkrZXlmGT2qbKvr2Rqc9C4HLwuzvuCJlTWFAK_Hq93Q9P-JGjcwvKxAIYj4EdkSkFmYaSUnFMpgCchimAnJCzYdgBAGVxckomnAEIn0zJctMrMzS2b8Nct9phHay31lkzBKvetoEKMrvFHo0LNtqEr6pSptoHz502gX-3WrXW1OfkpFFvA178xBl5WS032X2YP949ZDd52DGIXdgowVlalVGNMRWVRCE5CsaRySqNmzLBqolkI0suPS2jRGLMyxLrbywjwWfk8tC36-37iIMrdnbsjR9ZMC4Ei9I4Tbya_6ixbLEuul63qt8Xv1t7kBzAJ5a2GSqNpsI_5s8UgYx4mvgfsEw75bQ1mR2N86VX_y_lX0rvfAk</recordid><startdate>20200117</startdate><enddate>20200117</enddate><creator>Trusheim, Matthew E.</creator><creator>Pingault, Benjamin</creator><creator>Wan, Noel H.</creator><creator>Gundogan, Mustafa</creator><creator>De Santis, Lorenzo</creator><creator>Debroux, Romain</creator><creator>Gangloff, Dorian</creator><creator>Purser, Carola</creator><creator>Chen, Kevin C.</creator><creator>Walsh, Michael</creator><creator>Rose, Joshua J.</creator><creator>Becker, Jonas N.</creator><creator>Lienhard, Benjamin</creator><creator>Bersin, Eric</creator><creator>Paradeisanos, Ioannis</creator><creator>Wang, Gang</creator><creator>Lyzwa, Dominika</creator><creator>Montblanch, Alejandro R-P.</creator><creator>Malladi, Girish</creator><creator>Bakhru, Hassaram</creator><creator>Ferrari, Andrea C.</creator><creator>Walmsley, Ian A.</creator><creator>Atature, Mete</creator><creator>Englund, Dirk</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0179-3412</orcidid><orcidid>https://orcid.org/0000-0001-9534-8541</orcidid><orcidid>https://orcid.org/0000-0001-5241-4131</orcidid><orcidid>https://orcid.org/0000-0002-7100-0847</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0003-3320-5291</orcidid><orcidid>https://orcid.org/0000-0002-0069-4386</orcidid><orcidid>https://orcid.org/0000-0003-2065-2404</orcidid></search><sort><creationdate>20200117</creationdate><title>Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond</title><author>Trusheim, Matthew E. ; Pingault, Benjamin ; Wan, Noel H. ; Gundogan, Mustafa ; De Santis, Lorenzo ; Debroux, Romain ; Gangloff, Dorian ; Purser, Carola ; Chen, Kevin C. ; Walsh, Michael ; Rose, Joshua J. ; Becker, Jonas N. ; Lienhard, Benjamin ; Bersin, Eric ; Paradeisanos, Ioannis ; Wang, Gang ; Lyzwa, Dominika ; Montblanch, Alejandro R-P. ; Malladi, Girish ; Bakhru, Hassaram ; Ferrari, Andrea C. ; Walmsley, Ian A. ; Atature, Mete ; Englund, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p206t-fa4329cb5de614c7e473e423e27c96fb8ecf57f7b37fa4b587e63bbed14c77543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Color centers</topic><topic>Diamonds</topic><topic>Dilution</topic><topic>Electron spin</topic><topic>Electronic structure</topic><topic>Emitters</topic><topic>Emitters (electron)</topic><topic>Nuclear spin</topic><topic>Optical properties</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Qubits (quantum computing)</topic><topic>Radiative lifetime</topic><topic>Refrigeration</topic><topic>Science & Technology</topic><topic>Transportation networks</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trusheim, Matthew E.</creatorcontrib><creatorcontrib>Pingault, Benjamin</creatorcontrib><creatorcontrib>Wan, Noel H.</creatorcontrib><creatorcontrib>Gundogan, Mustafa</creatorcontrib><creatorcontrib>De Santis, Lorenzo</creatorcontrib><creatorcontrib>Debroux, Romain</creatorcontrib><creatorcontrib>Gangloff, Dorian</creatorcontrib><creatorcontrib>Purser, Carola</creatorcontrib><creatorcontrib>Chen, Kevin C.</creatorcontrib><creatorcontrib>Walsh, Michael</creatorcontrib><creatorcontrib>Rose, Joshua J.</creatorcontrib><creatorcontrib>Becker, Jonas N.</creatorcontrib><creatorcontrib>Lienhard, Benjamin</creatorcontrib><creatorcontrib>Bersin, Eric</creatorcontrib><creatorcontrib>Paradeisanos, Ioannis</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Lyzwa, Dominika</creatorcontrib><creatorcontrib>Montblanch, Alejandro R-P.</creatorcontrib><creatorcontrib>Malladi, Girish</creatorcontrib><creatorcontrib>Bakhru, Hassaram</creatorcontrib><creatorcontrib>Ferrari, Andrea C.</creatorcontrib><creatorcontrib>Walmsley, Ian A.</creatorcontrib><creatorcontrib>Atature, Mete</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trusheim, Matthew E.</au><au>Pingault, Benjamin</au><au>Wan, Noel H.</au><au>Gundogan, Mustafa</au><au>De Santis, Lorenzo</au><au>Debroux, Romain</au><au>Gangloff, Dorian</au><au>Purser, Carola</au><au>Chen, Kevin C.</au><au>Walsh, Michael</au><au>Rose, Joshua J.</au><au>Becker, Jonas N.</au><au>Lienhard, Benjamin</au><au>Bersin, Eric</au><au>Paradeisanos, Ioannis</au><au>Wang, Gang</au><au>Lyzwa, Dominika</au><au>Montblanch, Alejandro R-P.</au><au>Malladi, Girish</au><au>Bakhru, Hassaram</au><au>Ferrari, Andrea C.</au><au>Walmsley, Ian A.</au><au>Atature, Mete</au><au>Englund, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond</atitle><jtitle>Physical review letters</jtitle><stitle>PHYS REV LETT</stitle><addtitle>Phys Rev Lett</addtitle><date>2020-01-17</date><risdate>2020</risdate><volume>124</volume><issue>2</issue><spage>023602</spage><pages>023602-</pages><artnum>023602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T (1) > 10 ms, and the coherence time, T-2* reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><pmid>32004012</pmid><doi>10.1103/PhysRevLett.124.023602</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0179-3412</orcidid><orcidid>https://orcid.org/0000-0001-9534-8541</orcidid><orcidid>https://orcid.org/0000-0001-5241-4131</orcidid><orcidid>https://orcid.org/0000-0002-7100-0847</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0003-3320-5291</orcidid><orcidid>https://orcid.org/0000-0002-0069-4386</orcidid><orcidid>https://orcid.org/0000-0003-2065-2404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-01, Vol.124 (2), p.023602, Article 023602 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_pubmed_primary_32004012 |
source | American Physical Society Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals |
subjects | Color centers Diamonds Dilution Electron spin Electronic structure Emitters Emitters (electron) Nuclear spin Optical properties Physical Sciences Physics Physics, Multidisciplinary Qubits (quantum computing) Radiative lifetime Refrigeration Science & Technology Transportation networks Vacancies |
title | Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transform-Limited%20Photons%20From%20a%20Coherent%20Tin-Vacancy%20Spin%20in%20Diamond&rft.jtitle=Physical%20review%20letters&rft.au=Trusheim,%20Matthew%20E.&rft.date=2020-01-17&rft.volume=124&rft.issue=2&rft.spage=023602&rft.pages=023602-&rft.artnum=023602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.023602&rft_dat=%3Cproquest_pubme%3E2344259698%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344259698&rft_id=info:pmid/32004012&rfr_iscdi=true |