Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-01, Vol.124 (2), p.023602, Article 023602
Hauptverfasser: Trusheim, Matthew E., Pingault, Benjamin, Wan, Noel H., Gundogan, Mustafa, De Santis, Lorenzo, Debroux, Romain, Gangloff, Dorian, Purser, Carola, Chen, Kevin C., Walsh, Michael, Rose, Joshua J., Becker, Jonas N., Lienhard, Benjamin, Bersin, Eric, Paradeisanos, Ioannis, Wang, Gang, Lyzwa, Dominika, Montblanch, Alejandro R-P., Malladi, Girish, Bakhru, Hassaram, Ferrari, Andrea C., Walmsley, Ian A., Atature, Mete, Englund, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T (1) > 10 ms, and the coherence time, T-2* reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.124.023602