Injectable biodegradable bi-layered capsule for sustained delivery of bevacizumab in treating wet age-related macular degeneration
Vascular endothelial growth factor (VEGF) is a key regulator of abnormal blood vessel growth. As such, bevacizumab-based inhibition of VEGF has been the clinically adopted strategy to treat colorectal and breast cancers as well as age-related macular degeneration (AMD). However, as the treatment of...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2020-04, Vol.320, p.442-456 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vascular endothelial growth factor (VEGF) is a key regulator of abnormal blood vessel growth. As such, bevacizumab-based inhibition of VEGF has been the clinically adopted strategy to treat colorectal and breast cancers as well as age-related macular degeneration (AMD). However, as the treatment of vascular diseases often requires a high drug concentration for a long period, the burst release of bevacizumab remains a critical limitation in anti-VEGF-based therapies. Maintaining bevacizumab at high concentrations over extended periods remains challenging due to insufficient drug loading capacity and drug-device interactions. We report the development of a polymeric based bi-layered capsule that could address these challenges by extending the release over one year, thereby providing an effective platform enabling treatment of chronic vascular diseases. Remarkably, the developed capsules have a bi-layered structure which ensures the structural integrity of the injectable capsules and appropriate diffusion of bevacizumab by providing optimal physical trapping and electrostatic interaction. Meanwhile, the central hollow design enables a higher drug loading to meet the need for long-term release of bevacizumab for several months to one year. Using an in vitro drug release assay, we demonstrated that the bi-layered capsule could produce longer-term local drug administration by intravitreal injection compared to previously reported devices. The capsules also present minimal toxicity and maintain anti-VEGF potency, suggesting that our approach may have the potential to treat vascular-related diseases using bevacizumab.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2020.01.036 |