Injectable biodegradable bi-layered capsule for sustained delivery of bevacizumab in treating wet age-related macular degeneration

Vascular endothelial growth factor (VEGF) is a key regulator of abnormal blood vessel growth. As such, bevacizumab-based inhibition of VEGF has been the clinically adopted strategy to treat colorectal and breast cancers as well as age-related macular degeneration (AMD). However, as the treatment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2020-04, Vol.320, p.442-456
Hauptverfasser: Jiang, Pengfei, Chaparro, Francisco J., Cuddington, Clayton T., Palmer, Andre F., Ohr, Matthew P., Lannutti, John J., Swindle-Reilly, Katelyn E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vascular endothelial growth factor (VEGF) is a key regulator of abnormal blood vessel growth. As such, bevacizumab-based inhibition of VEGF has been the clinically adopted strategy to treat colorectal and breast cancers as well as age-related macular degeneration (AMD). However, as the treatment of vascular diseases often requires a high drug concentration for a long period, the burst release of bevacizumab remains a critical limitation in anti-VEGF-based therapies. Maintaining bevacizumab at high concentrations over extended periods remains challenging due to insufficient drug loading capacity and drug-device interactions. We report the development of a polymeric based bi-layered capsule that could address these challenges by extending the release over one year, thereby providing an effective platform enabling treatment of chronic vascular diseases. Remarkably, the developed capsules have a bi-layered structure which ensures the structural integrity of the injectable capsules and appropriate diffusion of bevacizumab by providing optimal physical trapping and electrostatic interaction. Meanwhile, the central hollow design enables a higher drug loading to meet the need for long-term release of bevacizumab for several months to one year. Using an in vitro drug release assay, we demonstrated that the bi-layered capsule could produce longer-term local drug administration by intravitreal injection compared to previously reported devices. The capsules also present minimal toxicity and maintain anti-VEGF potency, suggesting that our approach may have the potential to treat vascular-related diseases using bevacizumab. [Display omitted]
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2020.01.036