Bone Marrow Stem Cell Chemotactic Activity Is Induced by Elevated CXCl12 in Endometriosis

Endometriosis is an inflammatory gynecological disorder caused by the growth of endometrial tissue outside the uterus. Endometriosis produces chemokines, including CXCL12, that attract bone marrow cells to the lesions. In this study, we describe the expression, localization, and chemotactic activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproductive sciences (Thousand Oaks, Calif.) Calif.), 2017-04, Vol.24 (4), p.526
Hauptverfasser: Moridi, Irene, Mamillapalli, Ramanaiah, Cosar, Emine, Ersoy, Gulcin Sahin, Taylor, Hugh S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endometriosis is an inflammatory gynecological disorder caused by the growth of endometrial tissue outside the uterus. Endometriosis produces chemokines, including CXCL12, that attract bone marrow cells to the lesions. In this study, we describe the expression, localization, and chemotactic activity of CXCL12 in endometriotic lesions. Biopsies were collected both from women with endometriosis undergoing laparoscopy and control endometrium from women without endometriosis. Expression of CXCl12 and CXCR4 messenger RNA was increased approximately 4- and 6-fold, respectively, in endometriosis compared to eutopic endometrium. Immunohistochemistry of lesions revealed that CXCR4 was expressed in the stroma and epithelium in both endometriosis and control eutopic endometrium. The level of CXCR4 protein expression was significantly higher in all cellular compartments of the endometriotic lesions compared to control endometrium. CXCL12 protein expression was also higher in endometriotic lesions and was greatest in the epithelial compartment. CXCL12 was increased more in the condition media of cultured endometriosis than in controls as measured by enzyme-linked immunosorbent assay. Transwell chamber migration was used to demonstrate 2-fold increased chemoattraction of mouse bone marrow stem cells toward CXCL12 in the endometriotic-conditioned medium compared with eutopic endometrium. Our results indicate that a preferential recruitment of stem cells to endometriosis can explain how endometriosis outcompetes eutopic endometrium in recruiting the limited supply of circulating stem cells. The CXCL12/CXCR4 signaling axis is a potential target for the treatment of endometriosis and its associated disorders.
ISSN:1933-7205