Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage

[Display omitted] •Thermal energy performance of narrow particle size distribution limestones is studied.•Multicyclic activity is better for small particles under all the different studied conditions.•This effect is particularly relevant for particles smaller than 15 μm median particle size.•Particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced research 2020-03, Vol.22, p.67-76
Hauptverfasser: Durán-Martín, Jonatan D., Sánchez Jimenez, Pedro E., Valverde, José M., Perejón, Antonio, Arcenegui-Troya, Juan, García Triñanes, Pablo, Pérez Maqueda, Luis A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue
container_start_page 67
container_title Journal of advanced research
container_volume 22
creator Durán-Martín, Jonatan D.
Sánchez Jimenez, Pedro E.
Valverde, José M.
Perejón, Antonio
Arcenegui-Troya, Juan
García Triñanes, Pablo
Pérez Maqueda, Luis A.
description [Display omitted] •Thermal energy performance of narrow particle size distribution limestones is studied.•Multicyclic activity is better for small particles under all the different studied conditions.•This effect is particularly relevant for particles smaller than 15 μm median particle size.•Particle size effect is not relevant for particles between 15 and 900 μm. The calcium looping process, based on the reversible reaction between CaCO3 and CaO, is recently attracting a great deal of interest as a promising thermochemical energy storage system to be integrated in Concentrated Solar Power plants (CaL-CSP). The main drawbacks of the system are the incomplete conversion of CaO and its sintering-induced deactivation. In this work, the influence of particle size in these deactivation mechanisms has been assessed by performing experimental multicycle tests using standard limestone particles of well-defined and narrow particle size distributions. The results indicate that CaO multicycle conversion benefits from the use of small particles mainly when the calcination is carried out in helium at low temperature. Yet, the enhancement is only significant for particles below 15 μm. On the other hand, the strong sintering induced by calcining in CO2 at high temperatures makes particle size much less relevant for the multicycle performance. Finally, SEM imaging reveals that the mechanism responsible for the loss of activity is mainly pore-plugging when calcination is performed in helium, whereas extensive loss of surface area due to sintering is responsible for the deactivation when calcination is carried out in CO2 at high temperature.
doi_str_mv 10.1016/j.jare.2019.10.008
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmed_primary_31956443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2090123219301663</els_id><doaj_id>oai_doaj_org_article_02caec8aeac54449948153ffcae45741</doaj_id><sourcerecordid>2342361975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-f2fe8337e1e725a15d138a3b73450162234a1af3108eb50aa5df2f54fda6ff1d3</originalsourceid><addsrcrecordid>eNp9UU1r3DAQNaWhCUn-QA_Fx152q09_QCmU0I9AoFDSs5iVR14Z29pK9sLm13ec3S7NpbpoePPek2Zelr3lbM0ZLz506w4irgXjNQFrxqpX2ZVgNVtxIdTrcy3FZXabUsfoyKqqOX-TXUpe60IpeZWFn6HHPLh8B3HylurknwgY82mL-TD3BB4W2EJv_TzkfQg7P7Y52Mnv_XRYtL0fME1hxNyFuAjjEOwWB0-iHEeM7SGnfoQWb7ILB33C29N9nf36-uXx7vvq4ce3-7vPDyurBZ9WTjispCyRYyk0cN1wWYHclFJpml4IqYCDk5xVuNEMQDck0co1UDjHG3md3R99mwCd2UU_QDyYAN48AyG25jSwYcIC2goQrFZK1bWquJbOEap0qTh5fTp67ebNgI3FcYrQvzB92Rn91rRhb4q6oDAYGbw_GcTwe6ZVmcEni30PI4Y5GZpGyILXpSaqOFJtDClFdOdnODNL8KYzS_BmCX7BKHgSvfv3g2fJ35iJ8PFIQFr53mM0yXocLTY-op1oJ_5__n8ALb3Bsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342361975</pqid></control><display><type>article</type><title>Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage</title><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Durán-Martín, Jonatan D. ; Sánchez Jimenez, Pedro E. ; Valverde, José M. ; Perejón, Antonio ; Arcenegui-Troya, Juan ; García Triñanes, Pablo ; Pérez Maqueda, Luis A.</creator><creatorcontrib>Durán-Martín, Jonatan D. ; Sánchez Jimenez, Pedro E. ; Valverde, José M. ; Perejón, Antonio ; Arcenegui-Troya, Juan ; García Triñanes, Pablo ; Pérez Maqueda, Luis A.</creatorcontrib><description>[Display omitted] •Thermal energy performance of narrow particle size distribution limestones is studied.•Multicyclic activity is better for small particles under all the different studied conditions.•This effect is particularly relevant for particles smaller than 15 μm median particle size.•Particle size effect is not relevant for particles between 15 and 900 μm. The calcium looping process, based on the reversible reaction between CaCO3 and CaO, is recently attracting a great deal of interest as a promising thermochemical energy storage system to be integrated in Concentrated Solar Power plants (CaL-CSP). The main drawbacks of the system are the incomplete conversion of CaO and its sintering-induced deactivation. In this work, the influence of particle size in these deactivation mechanisms has been assessed by performing experimental multicycle tests using standard limestone particles of well-defined and narrow particle size distributions. The results indicate that CaO multicycle conversion benefits from the use of small particles mainly when the calcination is carried out in helium at low temperature. Yet, the enhancement is only significant for particles below 15 μm. On the other hand, the strong sintering induced by calcining in CO2 at high temperatures makes particle size much less relevant for the multicycle performance. Finally, SEM imaging reveals that the mechanism responsible for the loss of activity is mainly pore-plugging when calcination is performed in helium, whereas extensive loss of surface area due to sintering is responsible for the deactivation when calcination is carried out in CO2 at high temperature.</description><identifier>ISSN: 2090-1232</identifier><identifier>EISSN: 2090-1224</identifier><identifier>DOI: 10.1016/j.jare.2019.10.008</identifier><identifier>PMID: 31956443</identifier><language>eng</language><publisher>Egypt: Elsevier B.V</publisher><subject>Calcium carbonate ; Calcium looping ; Calcium oxide ; Concentrated solar power ; Energy storage</subject><ispartof>Journal of advanced research, 2020-03, Vol.22, p.67-76</ispartof><rights>2019 The Authors</rights><rights>2019 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University.</rights><rights>2019 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-f2fe8337e1e725a15d138a3b73450162234a1af3108eb50aa5df2f54fda6ff1d3</citedby><cites>FETCH-LOGICAL-c521t-f2fe8337e1e725a15d138a3b73450162234a1af3108eb50aa5df2f54fda6ff1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2090123219301663$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31956443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Durán-Martín, Jonatan D.</creatorcontrib><creatorcontrib>Sánchez Jimenez, Pedro E.</creatorcontrib><creatorcontrib>Valverde, José M.</creatorcontrib><creatorcontrib>Perejón, Antonio</creatorcontrib><creatorcontrib>Arcenegui-Troya, Juan</creatorcontrib><creatorcontrib>García Triñanes, Pablo</creatorcontrib><creatorcontrib>Pérez Maqueda, Luis A.</creatorcontrib><title>Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage</title><title>Journal of advanced research</title><addtitle>J Adv Res</addtitle><description>[Display omitted] •Thermal energy performance of narrow particle size distribution limestones is studied.•Multicyclic activity is better for small particles under all the different studied conditions.•This effect is particularly relevant for particles smaller than 15 μm median particle size.•Particle size effect is not relevant for particles between 15 and 900 μm. The calcium looping process, based on the reversible reaction between CaCO3 and CaO, is recently attracting a great deal of interest as a promising thermochemical energy storage system to be integrated in Concentrated Solar Power plants (CaL-CSP). The main drawbacks of the system are the incomplete conversion of CaO and its sintering-induced deactivation. In this work, the influence of particle size in these deactivation mechanisms has been assessed by performing experimental multicycle tests using standard limestone particles of well-defined and narrow particle size distributions. The results indicate that CaO multicycle conversion benefits from the use of small particles mainly when the calcination is carried out in helium at low temperature. Yet, the enhancement is only significant for particles below 15 μm. On the other hand, the strong sintering induced by calcining in CO2 at high temperatures makes particle size much less relevant for the multicycle performance. Finally, SEM imaging reveals that the mechanism responsible for the loss of activity is mainly pore-plugging when calcination is performed in helium, whereas extensive loss of surface area due to sintering is responsible for the deactivation when calcination is carried out in CO2 at high temperature.</description><subject>Calcium carbonate</subject><subject>Calcium looping</subject><subject>Calcium oxide</subject><subject>Concentrated solar power</subject><subject>Energy storage</subject><issn>2090-1232</issn><issn>2090-1224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1r3DAQNaWhCUn-QA_Fx152q09_QCmU0I9AoFDSs5iVR14Z29pK9sLm13ec3S7NpbpoePPek2Zelr3lbM0ZLz506w4irgXjNQFrxqpX2ZVgNVtxIdTrcy3FZXabUsfoyKqqOX-TXUpe60IpeZWFn6HHPLh8B3HylurknwgY82mL-TD3BB4W2EJv_TzkfQg7P7Y52Mnv_XRYtL0fME1hxNyFuAjjEOwWB0-iHEeM7SGnfoQWb7ILB33C29N9nf36-uXx7vvq4ce3-7vPDyurBZ9WTjispCyRYyk0cN1wWYHclFJpml4IqYCDk5xVuNEMQDck0co1UDjHG3md3R99mwCd2UU_QDyYAN48AyG25jSwYcIC2goQrFZK1bWquJbOEap0qTh5fTp67ebNgI3FcYrQvzB92Rn91rRhb4q6oDAYGbw_GcTwe6ZVmcEni30PI4Y5GZpGyILXpSaqOFJtDClFdOdnODNL8KYzS_BmCX7BKHgSvfv3g2fJ35iJ8PFIQFr53mM0yXocLTY-op1oJ_5__n8ALb3Bsg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Durán-Martín, Jonatan D.</creator><creator>Sánchez Jimenez, Pedro E.</creator><creator>Valverde, José M.</creator><creator>Perejón, Antonio</creator><creator>Arcenegui-Troya, Juan</creator><creator>García Triñanes, Pablo</creator><creator>Pérez Maqueda, Luis A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200301</creationdate><title>Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage</title><author>Durán-Martín, Jonatan D. ; Sánchez Jimenez, Pedro E. ; Valverde, José M. ; Perejón, Antonio ; Arcenegui-Troya, Juan ; García Triñanes, Pablo ; Pérez Maqueda, Luis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-f2fe8337e1e725a15d138a3b73450162234a1af3108eb50aa5df2f54fda6ff1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium carbonate</topic><topic>Calcium looping</topic><topic>Calcium oxide</topic><topic>Concentrated solar power</topic><topic>Energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durán-Martín, Jonatan D.</creatorcontrib><creatorcontrib>Sánchez Jimenez, Pedro E.</creatorcontrib><creatorcontrib>Valverde, José M.</creatorcontrib><creatorcontrib>Perejón, Antonio</creatorcontrib><creatorcontrib>Arcenegui-Troya, Juan</creatorcontrib><creatorcontrib>García Triñanes, Pablo</creatorcontrib><creatorcontrib>Pérez Maqueda, Luis A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of advanced research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durán-Martín, Jonatan D.</au><au>Sánchez Jimenez, Pedro E.</au><au>Valverde, José M.</au><au>Perejón, Antonio</au><au>Arcenegui-Troya, Juan</au><au>García Triñanes, Pablo</au><au>Pérez Maqueda, Luis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage</atitle><jtitle>Journal of advanced research</jtitle><addtitle>J Adv Res</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>22</volume><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>2090-1232</issn><eissn>2090-1224</eissn><abstract>[Display omitted] •Thermal energy performance of narrow particle size distribution limestones is studied.•Multicyclic activity is better for small particles under all the different studied conditions.•This effect is particularly relevant for particles smaller than 15 μm median particle size.•Particle size effect is not relevant for particles between 15 and 900 μm. The calcium looping process, based on the reversible reaction between CaCO3 and CaO, is recently attracting a great deal of interest as a promising thermochemical energy storage system to be integrated in Concentrated Solar Power plants (CaL-CSP). The main drawbacks of the system are the incomplete conversion of CaO and its sintering-induced deactivation. In this work, the influence of particle size in these deactivation mechanisms has been assessed by performing experimental multicycle tests using standard limestone particles of well-defined and narrow particle size distributions. The results indicate that CaO multicycle conversion benefits from the use of small particles mainly when the calcination is carried out in helium at low temperature. Yet, the enhancement is only significant for particles below 15 μm. On the other hand, the strong sintering induced by calcining in CO2 at high temperatures makes particle size much less relevant for the multicycle performance. Finally, SEM imaging reveals that the mechanism responsible for the loss of activity is mainly pore-plugging when calcination is performed in helium, whereas extensive loss of surface area due to sintering is responsible for the deactivation when calcination is carried out in CO2 at high temperature.</abstract><cop>Egypt</cop><pub>Elsevier B.V</pub><pmid>31956443</pmid><doi>10.1016/j.jare.2019.10.008</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-1232
ispartof Journal of advanced research, 2020-03, Vol.22, p.67-76
issn 2090-1232
2090-1224
language eng
recordid cdi_pubmed_primary_31956443
source DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Calcium carbonate
Calcium looping
Calcium oxide
Concentrated solar power
Energy storage
title Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T14%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20particle%20size%20on%20the%20multicycle%20calcium%20looping%20activity%20of%20limestone%20for%20thermochemical%20energy%20storage&rft.jtitle=Journal%20of%20advanced%20research&rft.au=Dur%C3%A1n-Mart%C3%ADn,%20Jonatan%20D.&rft.date=2020-03-01&rft.volume=22&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=2090-1232&rft.eissn=2090-1224&rft_id=info:doi/10.1016/j.jare.2019.10.008&rft_dat=%3Cproquest_doaj_%3E2342361975%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342361975&rft_id=info:pmid/31956443&rft_els_id=S2090123219301663&rft_doaj_id=oai_doaj_org_article_02caec8aeac54449948153ffcae45741&rfr_iscdi=true