A GSH Functionalized Magnetic Ultra-thin 2D-MoS 2 nanocomposite for HILIC-based enrichment of N-glycopeptides from urine exosome and serum proteins
Protein N-glycosylation plays crucial roles in many biological processes and has close association with the occurrence and development of various cancers. Therefore, it is necessary to analyze the abnormal changes of N-glycopeptides in complex biological samples for biomarker discovery. However, due...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2020-02, Vol.1098, p.181 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein N-glycosylation plays crucial roles in many biological processes and has close association with the occurrence and development of various cancers. Therefore, it is necessary to analyze the abnormal changes of N-glycopeptides in complex biological samples for biomarker discovery. However, due to their low abundance and poor ionization, N-glycopeptides identification in complex samples by mass spectrometry (MS) is still a challenging task. In this work, a novel magnetic hydrophilic material was prepared by serial functionalization of ultra-thin two-dimensional molybdenum disulfide with Fe
O
nanoparticles, gold nanowire and glutathione (MoS
-Fe
O
-Au/NWs-GSH) for efficient N-glycopeptides enrichment. The advantage of using the new nanocomposite is threefold. First, the introduction of magnetic Fe
O
nanoparticles efficiently simplifies the enrichment process. Second, the gold nanowire modification enlarges the surface area of the nanocomposites to facilitate interaction with N-glycopeptides. Third, the employment of highly hydrophilic glutathione leads to specific HILIC-based retention of N-glycopeptides. Low femtomolar detection sensitivity and 1:1000 enrichment selectivity can be achieved using MoS
-Fe
O
-Au/NWs-GSH enrichment and bio-mass spectrometry analysis. Successful applications in human urine exosome and serum proteins were demonstrated by the enrichment and identification of 1250 and 489 N-glycopeptides, respectively. This remarkable data set of N-glycoproteome indicates the application potential of the novel nanocomposites for N-glycopeptides enrichment in complex biological samples and for related glycoproteome studies. |
---|---|
ISSN: | 1873-4324 |