A Mechanistic Study of Protonated Aniline to Protonated Phenol Substitution Considering Tautomerization by Ion Mobility Mass Spectrometry and Tandem Mass Spectrometry

We report the use of ion mobility mass spectrometry (IMMS) and energy-resolved collisional activation to investigate gas-phase reactions of protonated aniline and protonated phenol. Protonated aniline prototropic tautomerization and nucleophilic substitution (SN1) to produce phenol with traces of wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2019-11, Vol.30 (11), p.2238
Hauptverfasser: Kune, Christopher, Delvaux, Cédric, Haler, Jean R N, Quinton, Loïc, Eppe, Gauthier, De Pauw, Edwin, Far, Johann
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the use of ion mobility mass spectrometry (IMMS) and energy-resolved collisional activation to investigate gas-phase reactions of protonated aniline and protonated phenol. Protonated aniline prototropic tautomerization and nucleophilic substitution (SN1) to produce phenol with traces of water in the IMMS cell are reported. Tautomerization of protonated phenol and its ability to form protonated aniline in presence of ammonia in the gas phase are also observed. These results are supported by energy landscapes obtained from computational chemistry. These structure modifications in the IMMS cell affected the measured collision cross section (CCS). A thorough understanding of the gas-phase reactions occurring in IMMS appears mandatory before using the experimental CCS as a robust descriptor which is stated by the recent literature.
ISSN:1879-1123