Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway

This study aimed to investigate the characteristics and mechanism of autophagy on podocyte apoptosis under high glucose (HG) conditions and further explore the effect of berberine on podocyte autophagy, apoptosis and the potential mechanism. The levels of LC3II/I in podocytes stimulated with HG were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2020-02, Vol.243, p.117277-117277, Article 117277
Hauptverfasser: Li, Chao, Guan, Xi-Mei, Wang, Rui-Yao, Xie, Yong-Sheng, Zhou, Hong, Ni, Wei-Jian, Tang, Li-Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to investigate the characteristics and mechanism of autophagy on podocyte apoptosis under high glucose (HG) conditions and further explore the effect of berberine on podocyte autophagy, apoptosis and the potential mechanism. The levels of LC3II/I in podocytes stimulated with HG were detected at 0, 2, 4, 8, 12, 24, 36 and 48 h by western blotting. CCK-8 was used to detect the viability of podocytes. The level of autophagy was detected by western blotting, transmission electron microscopy and immunofluorescence. Podocyte apoptosis was analysed by using Hoechst staining, western blotting, annexin V/propidium iodide dual staining, and confocal microscopy. Then, podocytes were transfected with siRNA to silence mTOR, and the expression levels of proteins and mRNA involved in the mTOR/P70S6K/4EBP1 pathway were further investigated by western blotting and qRT-PCR. In this study, we found significantly reduced LC3II/LC3I and increased p62 in podocytes stimulated with HG for 24 h, and the level of autophagy reached a minimum at 24 h. Berberine restored podocyte viability and significantly attenuated HG-mediated inhibition of autophagy, as evidenced by the increased expression of LC3II/LC3I, the number of autophagosomes and the inhibition of p62. Moreover, berberine counteracted HG-induced podocyte apoptosis and injury, which was negatively correlated with the autophagy effect. Notably, silencing mTOR with siRNA augmented the inhibition of P70S6k and 4EBP1 phosphorylation, which was similar to the effect of berberine. Berberine activates podocyte autophagy by inhibiting the mTOR/P70S6K/4EBP1 signaling pathway, thereby alleviating podocyte apoptosis.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2020.117277