Dissolved oxygen prediction using a new ensemble method
Prediction of dissolved oxygen which is an important water quality (WQ) parameter is crucial for aquatic managers who have responsibility for the ecosystem health’s maintenance and for the management of reservoirs related to WQ. This study proposes a new ensemble method, Bayesian model averaging (BM...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2020-03, Vol.27 (9), p.9589-9603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prediction of dissolved oxygen which is an important water quality (WQ) parameter is crucial for aquatic managers who have responsibility for the ecosystem health’s maintenance and for the management of reservoirs related to WQ. This study proposes a new ensemble method, Bayesian model averaging (BMA), for estimating hourly dissolved oxygen. The potential of the BMA was investigated and compared with five data-driven methods, extreme leaning machine (ELM), artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), classification and regression tree (CART), and multilinear regression (MLR), by considering hourly temperature, pH, and specific conductivity data as inputs. The methods were compared with respect to three statistics, root mean square errors (RMSE), Nash-Sutcliffe efficiency, and determination coefficient. Results based on two stations’ data indicated that the proposed method performed superior to the ELM, ANN, ANFIS, CART, and MLR in estimation of hourly dissolved oxygen; corresponding improvements obtained by BMA are about 5–8%, 13–12%, 7–9%, and 18–27% with respect to RMSE. The ELM also outperformed the other four methods (ANN, ANFIS, CART, and MLR), and the CART and MLR indicated the lowest estimation accuracy in both stations. Examination of various input combinations revealed that the most effective variable is water temperature while the specific conductivity has negligible effect on hourly dissolved oxygen. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-019-07574-w |