A Novel Negative-Transfer-Resistant Fuzzy Clustering Model With a Shared Cross-Domain Transfer Latent Space and its Application to Brain CT Image Segmentation

Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or outliers. However, a sufficient amount of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2021-01, Vol.18 (1), p.40-52
Hauptverfasser: Jiang, Yizhang, Gu, Xiaoqing, Wu, Dongrui, Hang, Wenlong, Xue, Jing, Qiu, Shi, Lin, Chin-Teng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or outliers. However, a sufficient amount of medical images with representative manual labels are often not available, because medical images are frequently acquired with different scanners (or different scan protocols) or polluted by various noises. Transfer learning improves learning in the target domain by leveraging knowledge from related domains. Given some target data, the performance of transfer learning is determined by the degree of relevance between the source and target domains. To achieve positive transfer and avoid negative transfer, a negative-transfer-resistant mechanism is proposed by computing the weight of transferred knowledge. Extracting a n egative- t ransfer- r esistant f uzzy c lustering model with a s hared c ross-domain t ransfer latent space (called NTR-FC-SCT) is proposed by integrating negative-transfer-resistant and maximum mean discrepancy (MMD) into the framework of fuzzy c-means clustering. Experimental results show that the proposed NTR-FC-SCT model outperformed several traditional non-transfer and related transfer clustering algorithms.
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2019.2963873