A uniform flow–cavity ring-down spectrometer (UF-CRDS): A new setup for spectroscopy and kinetics at low temperature
The UF-CRDS (Uniform Flow–Cavity Ring Down Spectrometer) is a new setup coupling for the first time a pulsed uniform (Laval) flow with a continuous wave CRDS in the near infrared for spectroscopy and kinetics at low temperature. This high resolution and sensitive absorption spectrometer opens a new...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-12, Vol.151 (24), p.244202-244202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The UF-CRDS (Uniform Flow–Cavity Ring Down Spectrometer) is a new setup coupling for the first time a pulsed uniform (Laval) flow with a continuous wave CRDS in the near infrared for spectroscopy and kinetics at low temperature. This high resolution and sensitive absorption spectrometer opens a new window into the phenomena occurring within UFs. The approach extends the detection range to new electronic and rovibrational transitions within Laval flows and offers the possibility to probe numerous species which have not been investigated yet. This new tool has been designed to probe radicals and reaction intermediates but also to follow the chemistry of hydrocarbon chains and PAHs which play a crucial role in the evolution of astrophysical environments. For kinetics measurements, the UF-CRDS combines the CRESU technique (French acronym meaning reaction kinetics in uniform supersonic flows) with the SKaR (Simultaneous Kinetics and Ring-Down) approach where, as indicated by its name, the entire reaction is monitored during each intensity decay within the high finesse cavity. The setup and the approach are demonstrated with the study of the reaction between CN (v = 1) and propene at low temperature. The recorded data are finally consistent with a previous study of the same reaction for CN (v = 0) relying on the CRESU technique with laser induced fluorescence detection. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.5125574 |