Sampling requirements and adaptive spatial averaging for incoherent digital holography

Incoherent digital holography (IDH) enables passive 3D imaging under spatially incoherent light; however, the reconstructed images are seriously affected by detector noise. Herein, we derive theoretical sampling requirements for IDH to reduce this noise via simple postprocessing based on spatial ave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-11, Vol.27 (23), p.33634
Hauptverfasser: Nobukawa, Teruyoshi, Katano, Yutaro, Muroi, Tetsuhiko, Kinoshita, Nobuhiro, Ishii, Norihiko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Incoherent digital holography (IDH) enables passive 3D imaging under spatially incoherent light; however, the reconstructed images are seriously affected by detector noise. Herein, we derive theoretical sampling requirements for IDH to reduce this noise via simple postprocessing based on spatial averaging. The derived theory provides a significant insight that the sampling requirements vary depending on the recording geometry. By judiciously choosing the number of pixels used for spatial averaging based on the proposed theory, noise can be reduced without losing spatial resolution. We then experimentally verify the derived theory and show that the associated adaptive spatial averaging technique is a practical and powerful way of improving 3D image quality.
ISSN:1094-4087
DOI:10.1364/OE.27.033634