Membrane fusion and infection abilities of baculovirus virions are preserved during freezing and thawing in the presence of trehalose

Budded viruses (BVs) of baculovirus such as Autographa californica nucleopolyhedrovirus (AcNPV) have recently been studied as biological nanomaterials, and methods for their longer-term storage without deterioration would be desirable. The cryopreservation of virions with a naturally occurring sacch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2020-04, Vol.84 (4), p.686-694
Hauptverfasser: Nakanishi, Kohei, Tomita, Masahiro, Tsumoto, Kanta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Budded viruses (BVs) of baculovirus such as Autographa californica nucleopolyhedrovirus (AcNPV) have recently been studied as biological nanomaterials, and methods for their longer-term storage without deterioration would be desirable. The cryopreservation of virions with a naturally occurring saccharide like trehalose as a cryoprotectant is known to be useful for maintaining the viral structure and function. In this study, we examined how useful trehalose is as protectant for BV cryopreservation during repeated freeze-thaw cycles: 1) membrane fusion between liposomes (multilamellar vesicles, MLVs) and BVs, 2) infection of insect culture cells (Sf9 cells) by RFP-expressing BVs, and 3) morphologies of these BVs were investigated by fluorescent dequenching assay, fluorescence microscopy, and transmission electron microscopy (TEM), respectively. The results suggest that the BVs deteriorate in quality with each freeze-thaw cycle, and this deterioration can be diminished with the use of trehalose to an extent similar to that seen with storage on ice. Trehalose serves as a cryoprotectant on baculovirus budded virus particles during repeated freeze-thaw cycles.
ISSN:0916-8451
1347-6947
DOI:10.1080/09168451.2019.1704396