Accelerated dynamic contrast enhanced MRI based on region of interest compressed sensing
Magnetic Resonance Imaging (MRI) provides excellent soft tissue contrast with one significant limitation of slow data acquisition. Dynamic Contrast Enhanced MRI (DCE-MRI) is one of the widely employed techniques to estimate tumor tissue physiological parameters using contrast agents. DCE-MRI data ac...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2020-04, Vol.67, p.18-23 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic Resonance Imaging (MRI) provides excellent soft tissue contrast with one significant limitation of slow data acquisition. Dynamic Contrast Enhanced MRI (DCE-MRI) is one of the widely employed techniques to estimate tumor tissue physiological parameters using contrast agents. DCE-MRI data acquisition and reconstruction requires high spatiotemporal resolution, especially during the post-contrast phase. The region of Interest Compressed Sensing (ROICS) is based on Compressed Sensing (CS) framework and works on the hypothesis that limiting CS to an ROI can achieve superior CS performance. In this work, ROICS has been demonstrated on breast DCE-MRI data at chosen acceleration factors and the results are compared with conventional CS implementation. Normalized Root Mean Square Error (NRMSE) was calculated to compare ROICS with CS quantitatively. CS and ROICS reconstructed images were used to compare Ktrans and ve values derived using standard Tofts Model (TM). This also validated the superior performance of ROICS over conventional CS. ROICS generated Concentration Time Curves (CTC's) at chosen acceleration factors follow similar trend as the ground truth data as compared to CS. Both qualitative and quantitative analyses show that ROICS outperforms CS particularly at acceleration factors of 5× and above. |
---|---|
ISSN: | 0730-725X 1873-5894 |
DOI: | 10.1016/j.mri.2019.11.014 |