YKL-40 Promotes Proliferation of Cutaneous T-Cell Lymphoma Tumor Cells through Extracellular Signal–Regulated Kinase Pathways
YKL-40, one of the chitinase-like proteins, is associated with the pathogenesis of a wide variety of human diseases through modulation of inflammation and tissue remodeling by its diverse roles in cell proliferation, differentiation, and survival. Emerging evidence shows that aberrantly expressed YK...
Gespeichert in:
Veröffentlicht in: | Journal of investigative dermatology 2020-04, Vol.140 (4), p.860-868.e3 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | YKL-40, one of the chitinase-like proteins, is associated with the pathogenesis of a wide variety of human diseases through modulation of inflammation and tissue remodeling by its diverse roles in cell proliferation, differentiation, and survival. Emerging evidence shows that aberrantly expressed YKL-40 promotes the development of malignancies by inducing proliferation of tumor cells, cytokine production, and angiogenesis by acting on various stromal cells, immune cells, and tumor cells. In this study, we investigated the expression and function of YKL-40 in cutaneous T-cell lymphoma (CTCL). We first revealed that serum YKL-40 levels were increased in patients with CTCL and correlated with disease severity markers. We also found that YKL-40 was expressed by epidermal keratinocytes and tumor cells in lesional skin of CTCL by immunohistochemistry. Although YKL-40 did not affect cytokine production from CTCL cell lines, YKL-40 promoted the proliferation of Hut78 cells and HH cells in vitro, which was dependent on extracellular signal–regulated kinase 1/2 pathways. Moreover, exogenous YKL-40 administration enhanced tumor growth of HH cells in vivo. Our study has suggested that YKL-40 produced from epidermal keratinocytes and CTCL cells promoted the proliferation of CTCL cells through extracellular signal–regulated kinase 1/2 pathways in autocrine and paracrine manners, leading to development of CTCL. |
---|---|
ISSN: | 0022-202X 1523-1747 |
DOI: | 10.1016/j.jid.2019.09.007 |