Graph Laplacian Regularization for Robust Optical Flow Estimation

This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Lap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.3970-3983
Hauptverfasser: Young, Sean I., Naman, Aous T., Taubman, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3983
container_issue
container_start_page 3970
container_title IEEE transactions on image processing
container_volume 29
creator Young, Sean I.
Naman, Aous T.
Taubman, David
description This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Laplacian. Using this analysis, we then propose a robust optical flow estimation method based on Gaussian graph Laplacians. We revisit the framework of iteratively reweighted least-squares from the perspective of graph edge reweighting, and employ the Welsch loss function to preserve flow discontinuities and handle occlusions. Our experiments using the Middlebury and MPI-Sintel optical flow datasets demonstrate the robustness and the efficiency of our proposed approach.
doi_str_mv 10.1109/TIP.2019.2945653
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_31613756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8864090</ieee_id><sourcerecordid>2352191226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-e50633fc55ab8627732c0ad388b1efa798924c04fd12bdc223aa8daa5308d39d3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRtFbvgiABL15SZ_Yr2WMpfhQKFdFz2Gw2mpJ2426C6K93tdWDpxmY5x1mHkLOECaIoK6f5g8TCqgmVHEhBdsjI1QcUwBO92MPIksz5OqIHIewAkAuUB6SI4YSWSbkiEzvvO5ek4XuWm0avUke7cvQat986r5xm6R2Pnl05RD6ZNn1jdFtctu69-Qm9M36BzkhB7Vugz3d1TF5vr15mt2ni-XdfDZdpIbxrE-tAMlYbYTQZS5pljFqQFcsz0u0tc5Urig3wOsKaVkZSpnWeaW1YJBXTFVsTK62ezvv3gYb-mLdBGPbVm-sG0JBGUiKjHKM6OU_dOUGv4nXRUpQVEipjBRsKeNdCN7WRefjT_6jQCi-9RZRb_Gtt9jpjZGL3eKhXNvqL_DrMwLnW6Cx1v6N81xyUMC-AMtsfLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352191226</pqid></control><display><type>article</type><title>Graph Laplacian Regularization for Robust Optical Flow Estimation</title><source>IEEE Xplore Digital Library</source><creator>Young, Sean I. ; Naman, Aous T. ; Taubman, David</creator><creatorcontrib>Young, Sean I. ; Naman, Aous T. ; Taubman, David</creatorcontrib><description>This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Laplacian. Using this analysis, we then propose a robust optical flow estimation method based on Gaussian graph Laplacians. We revisit the framework of iteratively reweighted least-squares from the perspective of graph edge reweighting, and employ the Welsch loss function to preserve flow discontinuities and handle occlusions. Our experiments using the Middlebury and MPI-Sintel optical flow datasets demonstrate the robustness and the efficiency of our proposed approach.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2945653</identifier><identifier>PMID: 31613756</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer terminals ; Eigenvalues and eigenfunctions ; Estimation ; Inverse problems ; Kernel ; Laplace equations ; Optical flow ; Optical flow (image analysis) ; Optical imaging ; Optical properties ; Optimization ; Pedestrians ; Regularization ; robust estimation ; Robustness</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.3970-3983</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-e50633fc55ab8627732c0ad388b1efa798924c04fd12bdc223aa8daa5308d39d3</citedby><cites>FETCH-LOGICAL-c347t-e50633fc55ab8627732c0ad388b1efa798924c04fd12bdc223aa8daa5308d39d3</cites><orcidid>0000-0002-4304-1959 ; 0000-0002-8458-6402 ; 0000-0002-5774-7143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8864090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8864090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31613756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Sean I.</creatorcontrib><creatorcontrib>Naman, Aous T.</creatorcontrib><creatorcontrib>Taubman, David</creatorcontrib><title>Graph Laplacian Regularization for Robust Optical Flow Estimation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Laplacian. Using this analysis, we then propose a robust optical flow estimation method based on Gaussian graph Laplacians. We revisit the framework of iteratively reweighted least-squares from the perspective of graph edge reweighting, and employ the Welsch loss function to preserve flow discontinuities and handle occlusions. Our experiments using the Middlebury and MPI-Sintel optical flow datasets demonstrate the robustness and the efficiency of our proposed approach.</description><subject>Computer terminals</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation</subject><subject>Inverse problems</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Optical flow</subject><subject>Optical flow (image analysis)</subject><subject>Optical imaging</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Pedestrians</subject><subject>Regularization</subject><subject>robust estimation</subject><subject>Robustness</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRtFbvgiABL15SZ_Yr2WMpfhQKFdFz2Gw2mpJ2426C6K93tdWDpxmY5x1mHkLOECaIoK6f5g8TCqgmVHEhBdsjI1QcUwBO92MPIksz5OqIHIewAkAuUB6SI4YSWSbkiEzvvO5ek4XuWm0avUke7cvQat986r5xm6R2Pnl05RD6ZNn1jdFtctu69-Qm9M36BzkhB7Vugz3d1TF5vr15mt2ni-XdfDZdpIbxrE-tAMlYbYTQZS5pljFqQFcsz0u0tc5Urig3wOsKaVkZSpnWeaW1YJBXTFVsTK62ezvv3gYb-mLdBGPbVm-sG0JBGUiKjHKM6OU_dOUGv4nXRUpQVEipjBRsKeNdCN7WRefjT_6jQCi-9RZRb_Gtt9jpjZGL3eKhXNvqL_DrMwLnW6Cx1v6N81xyUMC-AMtsfLM</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Young, Sean I.</creator><creator>Naman, Aous T.</creator><creator>Taubman, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4304-1959</orcidid><orcidid>https://orcid.org/0000-0002-8458-6402</orcidid><orcidid>https://orcid.org/0000-0002-5774-7143</orcidid></search><sort><creationdate>20200101</creationdate><title>Graph Laplacian Regularization for Robust Optical Flow Estimation</title><author>Young, Sean I. ; Naman, Aous T. ; Taubman, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-e50633fc55ab8627732c0ad388b1efa798924c04fd12bdc223aa8daa5308d39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer terminals</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation</topic><topic>Inverse problems</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Optical flow</topic><topic>Optical flow (image analysis)</topic><topic>Optical imaging</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Pedestrians</topic><topic>Regularization</topic><topic>robust estimation</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Sean I.</creatorcontrib><creatorcontrib>Naman, Aous T.</creatorcontrib><creatorcontrib>Taubman, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Young, Sean I.</au><au>Naman, Aous T.</au><au>Taubman, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Laplacian Regularization for Robust Optical Flow Estimation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>3970</spage><epage>3983</epage><pages>3970-3983</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Laplacian. Using this analysis, we then propose a robust optical flow estimation method based on Gaussian graph Laplacians. We revisit the framework of iteratively reweighted least-squares from the perspective of graph edge reweighting, and employ the Welsch loss function to preserve flow discontinuities and handle occlusions. Our experiments using the Middlebury and MPI-Sintel optical flow datasets demonstrate the robustness and the efficiency of our proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31613756</pmid><doi>10.1109/TIP.2019.2945653</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4304-1959</orcidid><orcidid>https://orcid.org/0000-0002-8458-6402</orcidid><orcidid>https://orcid.org/0000-0002-5774-7143</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020-01, Vol.29, p.3970-3983
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_31613756
source IEEE Xplore Digital Library
subjects Computer terminals
Eigenvalues and eigenfunctions
Estimation
Inverse problems
Kernel
Laplace equations
Optical flow
Optical flow (image analysis)
Optical imaging
Optical properties
Optimization
Pedestrians
Regularization
robust estimation
Robustness
title Graph Laplacian Regularization for Robust Optical Flow Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Laplacian%20Regularization%20for%20Robust%20Optical%20Flow%20Estimation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Young,%20Sean%20I.&rft.date=2020-01-01&rft.volume=29&rft.spage=3970&rft.epage=3983&rft.pages=3970-3983&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2945653&rft_dat=%3Cproquest_RIE%3E2352191226%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352191226&rft_id=info:pmid/31613756&rft_ieee_id=8864090&rfr_iscdi=true