Graph Laplacian Regularization for Robust Optical Flow Estimation
This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Lap...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020-01, Vol.29, p.3970-3983 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Laplacian. Using this analysis, we then propose a robust optical flow estimation method based on Gaussian graph Laplacians. We revisit the framework of iteratively reweighted least-squares from the perspective of graph edge reweighting, and employ the Welsch loss function to preserve flow discontinuities and handle occlusions. Our experiments using the Middlebury and MPI-Sintel optical flow datasets demonstrate the robustness and the efficiency of our proposed approach. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2019.2945653 |