Graph Laplacian Regularization for Robust Optical Flow Estimation

This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Lap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.3970-3983
Hauptverfasser: Young, Sean I., Naman, Aous T., Taubman, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes graph Laplacian regularization for robust estimation of optical flow. First, we analyze the spectral properties of dense graph Laplacians and show that dense graphs achieve a better trade-off between preserving flow discontinuities and filtering noise, compared with the usual Laplacian. Using this analysis, we then propose a robust optical flow estimation method based on Gaussian graph Laplacians. We revisit the framework of iteratively reweighted least-squares from the perspective of graph edge reweighting, and employ the Welsch loss function to preserve flow discontinuities and handle occlusions. Our experiments using the Middlebury and MPI-Sintel optical flow datasets demonstrate the robustness and the efficiency of our proposed approach.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2019.2945653